Identification of novel cell-free RNAs in maternal plasma as preterm biomarkers in combination with placental RNA profiles

Author:

Jin Heyue,Zhang Yimin,Fan Zhigang,Wang Xianyan,Rui Chen,Xing Shaozhen,Dong Hongmei,Wang Qunan,Tao Fangbiao,Zhu Yumin

Abstract

Abstract Background Preterm birth (PTB) is the main driver of newborn deaths. The identification of pregnancies at risk of PTB remains challenging, as the incomplete understanding of molecular mechanisms associated with PTB. Although several transcriptome studies have been done on the placenta and plasma from PTB women, a comprehensive description of the RNA profiles from plasma and placenta associated with PTB remains lacking. Methods Candidate markers with consistent trends in the placenta and plasma were identified by implementing differential expression analysis using placental tissue and maternal plasma RNA-seq datasets, and then validated by RT-qPCR in an independent cohort. In combination with bioinformatics analysis tools, we set up two protein–protein interaction networks of the significant PTB-related modules. The support vector machine (SVM) model was used to verify the prediction potential of cell free RNAs (cfRNAs) in plasma for PTB and late PTB. Results We identified 15 genes with consistent regulatory trends in placenta and plasma of PTB while the full term birth (FTB) acts as a control. Subsequently, we verified seven cfRNAs in an independent cohort by RT-qPCR in maternal plasma. The cfRNA ARHGEF28 showed consistence in the experimental validation and performed excellently in prediction of PTB in the model. The AUC achieved 0.990 for whole PTB and 0.986 for late PTB. Conclusions In a comparison of PTB versus FTB, the combined investigation of placental and plasma RNA profiles has shown a further understanding of the mechanism of PTB. Then, the cfRNA identified has the capacity of predicting whole PTB and late PTB.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3