Low-intensity pulsed ultrasound ameliorates glia-mediated inflammation and neuronal damage in experimental intracerebral hemorrhage conditions

Author:

Su Wei-Shen,Wu Chun-Hu,Song Wen-Shin,Chen Szu-Fu,Yang Feng-YiORCID

Abstract

Abstract Background Intracerebral hemorrhage (ICH) is a condition associated with high morbidity and mortality, and glia-mediated inflammation is a major contributor to neurological deficits. However, there is currently no proven effective treatment for clinical ICH. Recently, low-intensity pulsed ultrasound (LIPUS), a non-invasive method, has shown potential for neuroprotection in neurodegenerative diseases. This study aimed to investigate the neuroprotective effects and potential mechanisms of LIPUS on glia-mediated inflammation in ICH. Methods This study used 289 mice to investigate the effects of LIPUS on ICH. ICH was induced by injecting bacterial collagenase (type VII-S; 0.0375 U) into the striatum of the mice. LIPUS was applied noninvasively for 3 days, including a 2-h-delayed intervention to mimic clinical usage. The study evaluated neurological function, histology, brain water content, hemoglobin content, MRI, and protein expression of neurotrophic factors, inflammatory molecules, and apoptosis. In vitro studies investigated glia-mediated inflammation by adding thrombin (10 U/mL) or conditioned media to primary and cell line cultures. The PI3K inhibitor LY294002 was used to confirm the effects of PI3K/Akt signaling after LIPUS treatment. Results LIPUS treatment improved neurological deficits and reduced tissue loss, edema, and neurodegeneration after ICH. The protective effects of LIPUS resulted from decreased glia-mediated inflammation by inhibiting PI3K/Akt-NF-κB signaling, which reduced cytokine expression and attenuated microglial activation-induced neuronal damage in vitro. Conclusions LIPUS treatment improved neurological outcomes and reduced glia-mediated inflammation by inhibiting PI3K/Akt-NF-κB signaling after ICH. LIPUS may provide a non-invasive potential management strategy for ICH.

Funder

National Science and Technology Council of Taiwan

Cheng Hsin General Hospital Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3