Targeting RNA-binding protein HuR to inhibit the progression of renal tubular fibrosis

Author:

Huang Zhimin,Liu Simeng,Tang Anna,Wu Xiaoqing,Aube Jeffrey,Xu Liang,Huang YufengORCID

Abstract

Abstract Background Upregulation of an RNA-binding protein HuR has been implicated in glomerular diseases. Herein, we evaluated whether it is involved in renal tubular fibrosis. Methods HuR was firstly examined in human kidney biopsy tissue with tubular disease. Second, its expression and the effect of HuR inhibition with KH3 on tubular injury were further assessed in a mouse model induced by a unilateral renal ischemia/reperfusion (IR). KH3 (50 mg kg−1) was given daily via intraperitoneal injection from day 3 to 14 after IR. Last, one of HuR-targeted pathways was examined in cultured proximal tubular cells. Results HuR significantly increases at the site of tubular injury both in progressive CKD in patients and in IR-injured kidneys in mice, accompanied by upregulation of HuR targets that are involved in inflammation, profibrotic cytokines, oxidative stress, proliferation, apoptosis, tubular EMT process, matrix remodeling and fibrosis in renal tubulointerstitial fibrosis. KH3 treatment reduces the IR-induced tubular injury and fibrosis, accompanied by the remarkable amelioration in those involved pathways. A panel of mRNA array further revealed that 519 molecules in mouse kidney following IR injury changed their expression and 71.3% of them that are involved in 50 profibrotic pathways, were ameliorated when treated with KH3. In vitro, TGFβ1 induced tubular HuR cytoplasmic translocation and subsequent tubular EMT, which were abrogated by KH3 administration in cultured HK-2 cells. Conclusions These results suggest that excessive upregulation of HuR contributes to renal tubulointerstitial fibrosis by dysregulating genes involved in multiple profibrotic pathways and activating the TGFß1/HuR feedback circuit in tubular cells. Inhibition of HuR may have therapeutic potential for renal tubular fibrosis.

Funder

NIH-NIDDK

NIH-NCI

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3