XGBoost-based machine learning test improves the accuracy of hemorrhage prediction among geriatric patients with long-term administration of rivaroxaban

Author:

Chen Cheng,Yin Chun,Wang Yanhu,Zeng Jing,Wang Shuili,Bao Yurong,Xu Yixuan,Liu Tongbo,Fan Jiao,Liu Xian

Abstract

Abstract Background Hemorrhage is a potential and serious adverse drug reaction, especially for geriatric patients with long-term administration of rivaroxaban. It is essential to establish an effective model for predicting bleeding events, which could improve the safety of rivaroxaban use in clinical practice. Methods The hemorrhage information of 798 geriatric patients (over the age of 70 years) who needed long-term administration of rivaroxaban for anticoagulation therapy was constantly tracked and recorded through a well-established clinical follow-up system. Relying on the 27 collected clinical indicators of these patients, conventional logistic regression analysis, random forest and XGBoost-based machine learning approaches were applied to analyze the hemorrhagic risk factors and establish the corresponding prediction models. Furthermore, the performance of the models was tested and compared by the area under curve (AUC) of the receiver operating characteristic (ROC) curve. Results A total of 112 patients (14.0%) had bleeding adverse events after treatment with rivaroxaban for more than 3 months. Among them, 96 patients had gastrointestinal and intracranial hemorrhage during treatment, which accounted for 83.18% of the total hemorrhagic events. The logistic regression, random forest and XGBoost models were established with AUCs of 0.679, 0.672 and 0.776, respectively. The XGBoost model showed the best predictive performance in terms of discrimination, accuracy and calibration among all the models. Conclusion An XGBoost-based model with good discrimination and accuracy was built to predict the hemorrhage risk of rivaroxaban, which will facilitate individualized treatment for geriatric patients.

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3