Development of a machine learning algorithm to predict the residual cognitive reserve index

Author:

Gavett Brandon E1ORCID,Tomaszewski Farias Sarah1,Fletcher Evan1ORCID,Widaman Keith2,Whitmer Rachel A13,Mungas Dan1

Affiliation:

1. Department of Neurology, University of California Davis School of Medicine , Sacramento, CA 95816 , USA

2. School of Education, University of California, Riverside , Riverside, CA 92521 , USA

3. Department of Public Health Sciences, University of California Davis , Davis, CA 95616 , USA

Abstract

Abstract Elucidating the mechanisms by which late-life neurodegeneration causes cognitive decline requires understanding why some individuals are more resilient than others to the effects of brain change on cognition (cognitive reserve). Currently, there is no way of measuring cognitive reserve that is valid (e.g. capable of moderating brain-cognition associations), widely accessible (e.g. does not require neuroimaging and large sample sizes), and able to provide insight into resilience-promoting mechanisms. To address these limitations, this study sought to determine whether a machine learning approach to combining standard clinical variables could (i) predict a residual-based cognitive reserve criterion standard and (ii) prospectively moderate brain-cognition associations. In a training sample combining data from the University of California (UC) Davis and the Alzheimer's Disease Neuroimaging Initiative-2 (ADNI-2) cohort (N = 1665), we operationalized cognitive reserve using an MRI-based residual approach. An eXtreme Gradient Boosting machine learning algorithm was trained to predict this residual reserve index (RRI) using three models: Minimal (basic clinical data, such as age, education, anthropometrics, and blood pressure), Extended (Minimal model plus cognitive screening, word reading, and depression measures), and Full [Extended model plus Clinical Dementia Rating (CDR) and Everyday Cognition (ECog) scale]. External validation was performed in an independent sample of ADNI 1/3/GO participants (N = 1640), which examined whether the effects of brain change on cognitive change were moderated by the machine learning models’ cognitive reserve estimates. The three machine learning models differed in their accuracy and validity. The Minimal model did not correlate strongly with the criterion standard (r = 0.23) and did not moderate the effects of brain change on cognitive change. In contrast, the Extended and Full models were modestly correlated with the criterion standard (r = 0.49 and 0.54, respectively) and prospectively moderated longitudinal brain-cognition associations, outperforming other cognitive reserve proxies (education, word reading). The primary difference between the Minimal model—which did not perform well as a measure of cognitive reserve—and the Extended and Full models—which demonstrated good accuracy and validity—is the lack of cognitive performance and informant-report data in the Minimal model. This suggests that basic clinical variables like anthropometrics, vital signs, and demographics are not sufficient for estimating cognitive reserve. Rather, the most accurate and valid estimates of cognitive reserve were obtained when cognitive performance data—ideally augmented by informant-reported functioning—was used. These results indicate that a dynamic and accessible proxy for cognitive reserve can be generated for individuals without neuroimaging data and gives some insight into factors that may promote resilience.

Funder

National Institute on Aging

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3