Hybrid grid generation for viscous flow simulations in complex geometries

Author:

Ye Hongfei,Liu Yang,Chen Bo,Liu Zhiwei,Zheng Jianjing,Pang Yufei,Chen JianjunORCID

Abstract

AbstractIn this paper, we present a hybrid grid generation approach for viscous flow simulations by marching a surface triangulation on viscous walls along certain directions. Focuses are on the computing strategies used to determine the marching directions and distances since these strategies determine the quality of the resulting elements and the reliability of the meshing procedure to a large extent. With respect to marching directions, three strategies featured with different levels of efficiencies and robustness performance are combined to compute the initial normals at front nodes to balance the trade-off between efficiency and robustness. A novel weighted strategy is used in the normal smoothing scheme, which evidently reduces the possibility of early stop of front generation at complex corners. With respect to marching distances, the distance settings at concave and/or convex corners are locally adjusted to smooth the front shape at first; a further adjustment is then conducted for front nodes in the neighbourhood of gaps between opposite viscous boundaries. These efforts, plus other special treatments such as multi-normal generation and fast detection of local/global intersection, as a whole enable the setup of a hybrid mesher that could generate qualitied viscous grids for geometries with industry-level complexities.

Publisher

Springer Science and Business Media LLC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Generation of Quadrilateral/Prismatic Boundary Layer Meshes Based on Rigid Mapping;Lecture Notes in Computational Science and Engineering;2024

2. Class-Incremental Grouping Network for Continual Audio-Visual Learning;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

3. Learning Navigational Visual Representations with Semantic Map Supervision;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

4. Fast advancing layer method for viscous mesh generation;Chinese Journal of Aeronautics;2023-09

5. Audio-Visual Grouping Network for Sound Localization from Mixtures;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3