Calibrating sub-grid scale models for high-order wall-modeled large eddy simulation

Author:

Duan Zhaowen,Wang Z. J.ORCID

Abstract

AbstractHigh-order methods have demonstrated orders of magnitude reduction in computational cost for large eddy simulation (LES) over low-order methods in the past decade. Most such simulations are wall-resolved implicit LES (ILES) without an explicit sub-grid scale (SGS) model. The use of high-order ILES for severely under-resolved LES such as wall-modeled LES (WMLES) often runs into robustness and accuracy issues due to the low dissipation embedded in these methods. In the present study, we investigate the performance of several popular SGS models, the static Smagorinsky model, the wall-adapting local eddy-viscosity (WALE) model and the Vreman model, to improve the robustness and accuracy of under-resolved LES using high-order methods. The models are implemented in the high-order unstructured grid LES solver called hpMusic based on the discontinuous flux reconstruction method. The length scales in these SGS models are calibrated using the direct numerical simulation (DNS) database for the turbulent channel flow problem. The Vreman model has been found to produce the most accurate and consistent results with a proper choice of the length scale for WMLES.

Funder

Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3