Towards Wall-Resolved Large-Eddy Simulation of the High-Lift Common Research Model

Author:

Wang Z. J.1,Hantla Avery1

Affiliation:

1. University of Kansas, Lawrence, Kansas 66045

Abstract

In the present study, we performed a sixth-order wall-resolved large-eddy simulation (WRLES) of the high-lift Common Research Model (CRM-HL) on the Leadership Class Computing Cluster Summit. During the 4th High-Lift Prediction Workshop (HLPW-4), wall-modeled LES (WMLES) and hybrid Reynolds-averaged Navier–Stokes (RANS)/LES approaches showed promise in predicting the maximum lift and large flow separations near stall. In those simulations, however, laminar and transition regions were not resolved since the flow was assumed to be fully turbulent. If one wants to resolve these regions, the only viable approach is WRLES. The main purpose of the present study is to demonstrate the feasibility of WRLES for a complex real-world configuration at the wind tunnel Reynolds number. A high-order unstructured mesh LES solver called hpMusic was employed in the study. The simulation at solution polynomial order [Formula: see text] has more than 14 billion degrees of freedom per equation. Computational results are compared to experimental data in the form of surface oil flows and pressure coefficient profiles. We highlight lessons learned from attempting a grand-challenge type large-scale simulation: 1) such a simulation is feasible but very expensive, estimated to be at least three orders more expensive than WMLES, 2) oil flows produced with WRLES agree very well with experimental oil flows in fine detail, not observed in those produced with WMLES, and 3) flow visualization is a severe bottleneck, and parallel postprocessing capability is needed.

Funder

Oak Ridge National Laboratory

Air Force Office of Scientific Research

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3