High fidelity numerical simulations on the unsteady flow field of low-pressure turbine cascades with and without upstream disturbance at moderate Reynolds number

Author:

Zhu Hongbo,Pang Xiyuan,Wu Feng,Zhang Chunxiao,Bao Yan,Xu Hui

Abstract

AbstractThis paper numerically investigates the aerodynamic performance of the T106A low-pressure turbine based with different inflow conditions at moderate Reynolds number by using high performance computing based on high order unstructured methods. Two different inflow conditions respectively of uniform and disturbed are considered, while for the latter a small circular cylinder is placed upstream of the cascade to generate wake turbulence as a long-standing disturbance. A high order Fourier-spectral/hp element method is employed to solve the flow dynamics in the cascade of high complex geometries. Flow transition characteristics are quantified in terms of the distribution of cascade wall surface pressure and friction coefficient, the distribution of wake profile pressure loss and the evolution characteristics of boundary layer flow structures as well. The numerical results show that the current numerical simulations accurately predict the flow transition performance of low-pressure turbine cascades and capture the effects of wake-generated disturbance on the cascade, which is shown to effectively modify the flow transition performance as compared with the uniform inflow case.

Funder

National Numerical Wind-tunnel

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3