A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade

Author:

Stadtmüller Peter1,Fottner Leonhard1

Affiliation:

1. Universität der Bundeswehr München, Neubiberg, Germany

Abstract

The paper presents a compilation of experimental data on the effects of wake-induced transition on a highly loaded LP turbine cascade intended to be used for further numerical work. Although the underlying physics is not yet completely understood, the benefits of wake passing are already known and employed in the design process of modern gas turbines. For further optimizations, the next step seems to be now to enable numerical simulations detailed enough to capture the major effects while being as uncomplicated as possible at the same time to be cost-effective. The experimental results constituted in this systematic investigation are available for download and should serve as a basic data set for future calculations with different turbulence and transition models, thereby shedding some light on the complexity and modeling required for a suitable numerical treatment of the wake-induced transition process. The data introduced in this test case was acquired using a turbine cascade called T106D-EIZ with increased blade pitch compared to design point conditions in order to achieve a higher loading. A large separation bubble forms on the suction side and allows to study boundary layer development in great detail. The upstream blade row was simulated by a moving bar type wake generator. The measurements comprise hot wire data of the bar wake characteristics in the cascade inlet plane (velocity deficit and turbulence level), boundary layer surveys with surface-mounted hot films sensors and a hot wire probe at various locations and measurements of the total pressure loss coefficient. Unsteady pressure transducers are embedded into the suction side of a cascade blade and in a wake rake to resolve the local pressure distributions over time. They yield quantitative values easily comparable to the output of numerical simulations. The objective of this paper is to enable and to invite interested researchers to validate their code on the data set. From the extensive test program, a very limited number of operating points have been selected to focus the work. The standardized data files include a “reference” case with an exit Reynolds number of 200.000 and an exit Mach number of 0.4 as well as two points with higher Mach or lower Reynolds number for constant wake passing frequencies and background turbulence levels.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3