A neuromechanical model for Drosophila larval crawling based on physical measurements

Author:

Sun Xiyang,Liu Yingtao,Liu Chang,Mayumi Koichi,Ito Kohzo,Nose Akinao,Kohsaka HiroshiORCID

Abstract

Abstract Background Animal locomotion requires dynamic interactions between neural circuits, the body (typically muscles), and surrounding environments. While the neural circuitry of movement has been intensively studied, how these outputs are integrated with body mechanics (neuromechanics) is less clear, in part due to the lack of understanding of the biomechanical properties of animal bodies. Here, we propose an integrated neuromechanical model of movement based on physical measurements by taking Drosophila larvae as a model of soft-bodied animals. Results We first characterized the kinematics of forward crawling in Drosophila larvae at a segmental and whole-body level. We then characterized the biomechanical parameters of fly larvae, namely the contraction forces generated by neural activity, and passive elastic and viscosity of the larval body using a stress-relaxation test. We established a mathematical neuromechanical model based on the physical measurements described above, obtaining seven kinematic values characterizing crawling locomotion. By optimizing the parameters in the neural circuit, our neuromechanical model succeeded in quantitatively reproducing the kinematics of larval locomotion that were obtained experimentally. This model could reproduce the observation of optogenetic studies reported previously. The model predicted that peristaltic locomotion could be exhibited in a low-friction condition. Analysis of floating larvae provided results consistent with this prediction. Furthermore, the model predicted a significant contribution of intersegmental connections in the central nervous system, which contrasts with a previous study. This hypothesis allowed us to make a testable prediction for the variability in intersegmental connection in sister species of the genus Drosophila. Conclusions We generated a neurochemical model based on physical measurement to provide a new foundation to study locomotion in soft-bodied animals and soft robot engineering.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3