Genome of the pincer wasp Gonatopus flavifemur reveals unique venom evolution and a dual adaptation to parasitism and predation

Author:

Yang YiORCID,Ye XinhaiORCID,Dang Cong,Cao Yunshen,Hong Rui,Sun Yu H.,Xiao Shan,Mei Yang,Xu Le,Fang Qi,Xiao Huamei,Li FeiORCID,Ye GongyinORCID

Abstract

Abstract Background Hymenoptera comprise extremely diverse insect species with extensive variation in their life histories. The Dryinidae, a family of solitary wasps of Hymenoptera, have evolved innovations that allow them to hunt using venom and a pair of chelae developed from the fore legs that can grasp prey. Dryinidae larvae are also parasitoids of Auchenorrhyncha, a group including common pests such as planthoppers and leafhoppers. Both of these traits make them effective and valuable for pest control, but little is yet known about the genetic basis of its dual adaptation to parasitism and predation. Results We sequenced and assembled a high-quality genome of the dryinid wasp Gonatopus flavifemur, which at 636.5 Mb is larger than most hymenopterans. The expansion of transposable elements, especially DNA transposons, is a major contributor to the genome size enlargement. Our genome-wide screens reveal a number of positively selected genes and rapidly evolving proteins involved in energy production and motor activity, which may contribute to the predatory adaptation of dryinid wasp. We further show that three female-biased, reproductive-associated yellow genes, in response to the prey feeding behavior, are significantly elevated in adult females, which may facilitate the egg production. Venom is a powerful weapon for dryinid wasp during parasitism and predation. We therefore analyze the transcriptomes of venom glands and describe specific expansions in venom Idgf-like genes and neprilysin-like genes. Furthermore, we find the LWS2-opsin gene is exclusively expressed in male G. flavifemur, which may contribute to partner searching and mating. Conclusions Our results provide new insights into the genome evolution, predatory adaptation, venom evolution, and sex-biased genes in G. flavifemur, and present genomic resources for future in-depth comparative analyses of hymenopterans that may benefit pest control.

Funder

Key Program of National Natural Science Foundation of China

Major International (Regional) Joint Research Project of NSFC

Program for Chinese Innovation Team in Key Areas of Science and Technology of Ministry of Science and Technology of the People’s Republic of China

Program for Chinese Outstanding Talents in Agricultural Scientific Research of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Reference168 articles.

1. Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, et al. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr Biol. 2017;27(7):1019–25. https://doi.org/10.1016/j.cub.2017.03.027.

2. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al. Evolutionary history of the Hymenoptera. Curr Biol. 2017;27(7):1013–8. https://doi.org/10.1016/j.cub.2017.01.027.

3. Olmi M. A revision of the Dryinidae (Hymenoptera). Memoirs Am Entomol Inst. 1984;37:947–1913.

4. Guglielmino A. Dryinidae (Hymenoptera Chrysidoidea): an interesting group among the natural enemies of the Auchenorrhyncha (Hemiptera). Denisia. 2002;4:549–56.

5. Melo GA, Marcel MG, Garcete-Barrett BR. Origin and occurrence of predation among Hymenoptera: a phylogenetic perspective. In: Polidori C, editor. Predation in the Hymenoptera: an evolutionary perspective. Kerala: Transworld Research Network; 2011. p. 1–22.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3