Distinct hybridization modes in wide- and narrow-ranged lineages of Causonis (Vitaceae)
-
Published:2023-10-09
Issue:1
Volume:21
Page:
-
ISSN:1741-7007
-
Container-title:BMC Biology
-
language:en
-
Short-container-title:BMC Biol
Author:
Yu Jinren,
Zhao Hong,
Niu Yanting,
You Yichen,
Barrett Russell L.,
Ranaivoson Rindra Manasoa,
Rabarijaona Romer Narindra,
Parmar Gaurav,
Yuan Langxing,
Jin Xiaofeng,
Li Pan,
Li Jianhua,
Wen Jun,
Chen Zhiduan,
Lu LiminORCID
Abstract
Abstract
Background
Explaining contrasting patterns of distribution between related species is crucial for understanding the dynamics of biodiversity. Despite instances where hybridization and whole genome duplication (WGD) can yield detrimental outcomes, a role in facilitating the expansion of distribution range has been proposed. The Vitaceae genus Causonis exhibits great variations in species’ distribution ranges, with most species in the derived lineages having a much wider range than those in the early-diverged lineages. Hybridization and WGD events have been suggested to occur in Causonis based on evidence of phylogenetic discordance. The genus, therefore, provides us with an opportunity to for explore different hybridization and polyploidization modes in lineages with contrasting species’ distribution ranges. However, the evolutionary history of Causonis incorporating potential hybridization and WGD events remains to be explored.
Results
With plastid and nuclear data from dense sampling, this study resolved the phylogenetic relationships within Causonis and revealed significant cyto-nuclear discordance. Nuclear gene tree conflicts were detected across the genus, especially in the japonica-corniculata clade, which were mainly attributed to gene flow. This study also inferred the allopolyploid origin of the core Causonis species, which promoted the accumulation of stress-related genes. Causonis was estimated to have originated in continental Asia in the early Eocene, and experienced glaciation in the early Oligocene, shortly after the divergence of the early-divergent lineages. The japonica-corniculata clade mainly diversified in the Miocene, followed by temperature declines that may have facilitated secondary contact. Species distribution modeling based on current climate change predicted that the widespread C. japonica tends to be more invasive, while the endemic C. ciliifera may be at risk of extinction.
Conclusions
This study presents Causonis, a genus with complex reticulate evolutionary history, as a model of how hybridization and WGD modes differ in lineages of contrasting species’ geographic ranges. It is important to consider specific evolutionary histories and genetic properties of the focal species within conservation strategies.
Funder
the National Natural Science Foundation of China
the National Key Research Development Program of China
the Strategic Priority Research Program of the Chinese Academy of Sciences
the International Partnership Program of CAS
the Youth Innovation Promotion Association CAS
the Sino-Africa Joint Research Center, CAS International Research and Education Development Program
the K.C.Wong Education Foundation
CAS-TWAS President’s Ph.D. Fellowship for International Students
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献