Author:
Guo Yang,Meng Lingfeng,Wang Minxiao,Zhong Zhaoshan,Li Denghui,Zhang Yaolei,Li Hanbo,Zhang Huan,Seim Inge,Li Yuli,Jiang Aijun,Ji Qianyue,Su Xiaoshan,Chen Jianwei,Fan Guangyi,Li Chaolun,Liu Shanshan
Abstract
AbstractBackgroundBivalves have independently evolved a variety of symbiotic relationships with chemosynthetic bacteria. These relationships range from endo- to extracellular interactions, making them ideal for studies on symbiosis-related evolution. It is still unclear whether there are universal patterns to symbiosis across bivalves. Here, we investigate the hologenome of an extracellular symbiotic thyasirid clam that represents the early stages of symbiosis evolution.ResultsWe present a hologenome ofConchocele bisecta(Bivalvia: Thyasiridae) collected from deep-sea hydrothermal vents with extracellular symbionts, along with related ultrastructural evidence and expression data. Based on ultrastructural and sequencing evidence, only one dominant Thioglobaceae bacteria was densely aggregated in the large bacterial chambers ofC. bisecta, and the bacterial genome shows nutritional complementarity and immune interactions with the host. Overall, gene family expansions may contribute to the symbiosis-related phenotypic variations in different bivalves. For instance, convergent expansions of gaseous substrate transport families in the endosymbiotic bivalves are absent inC. bisecta. Compared to endosymbiotic relatives, the thyasirid genome exhibits large-scale expansion in phagocytosis, which may facilitate symbiont digestion and account for extracellular symbiotic phenotypes. We also reveal that distinct immune system evolution, including expansion in lipopolysaccharide scavenging and contraction of IAP (inhibitor of apoptosis protein), may contribute to the different manners of bacterial virulence resistance inC. bisecta.ConclusionsThus, bivalves employ different pathways to adapt to the long-term co-existence with their bacterial symbionts, further highlighting the contribution of stochastic evolution to the independent gain of a symbiotic lifestyle in the lineage.
Funder
National Natural Science Foundation of China
Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献