Reduced chemosymbiont genome in the methane seep thyasirid and the cooperated metabolisms in the holobiont under anaerobic sediment

Author:

Li Yunlong12ORCID,He Xing12ORCID,Lin Yuxuan3ORCID,Li Yi‐Xuan4,Kamenev Gennady M.5,Li Jiying3,Qiu Jian‐Wen4ORCID,Sun Jin12ORCID

Affiliation:

1. Institute of Evolution & Marine Biodiversity, Key Laboratory of Mariculture (Ministry of Education), Ocean University of China Qingdao China

2. Laoshan Laboratory Qingdao China

3. Department of Ocean Science Hong Kong University of Science and Technology Hong Kong China

4. Department of Biology Hong Kong Baptist University Hong Kong China

5. A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences Vladivostok Russian Federation

Abstract

AbstractPrevious studies have deciphered the genomic basis of host‐symbiont metabolic complementarity in vestimentiferans, bathymodioline mussels, vesicomyid clams and Alviniconcha snails, yet little is known about the chemosynthetic symbiosis in Thyasiridae—a family of Bivalvia regarded as an excellent model in chemosymbiosis research due to their wide distribution in both deep‐sea and shallow‐water habitats. We report the first circular thyasirid symbiont genome, named Candidatus Ruthturnera sp. Tsphm01, with a size of 1.53 Mb, 1521 coding genes and 100% completeness. Compared to its free‐living relatives, Ca. Ruthturnera sp. Tsphm01 genome is reduced, lacking components for chemotaxis, citric acid cycle and de novo biosynthesis of small molecules (e.g. amino acids and cofactors), indicating it is likely an obligate intracellular symbiont. Nevertheless, the symbiont retains complete genomic components of sulphur oxidation and assimilation of inorganic carbon, and these systems were highly and actively expressed. Moreover, the symbiont appears well‐adapted to anoxic environment, including capable of anaerobic respiration (i.e. reductions of DMSO and nitrate) and possession of a low oxygen‐adapted type of cytochrome c oxidase. Analysis of the host transcriptome revealed its metabolic complementarity to the incomplete metabolic pathways of the symbiont and the acquisition of nutrients from the symbiont via phagocytosis and exosome. By providing the first complete genome of reduced size in a thyasirid symbiont, this study enhances our understanding of the diversity of symbiosis that has enabled bivalves to thrive in chemosynthetic habitats. The resources will be widely used in phylogenetic, geographic and evolutionary studies of chemosynthetic bacteria and bivalves.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3