Proteogenomics analysis of CUG codon translation in the human pathogen Candida albicans

Author:

Mühlhausen Stefanie,Schmitt Hans Dieter,Plessmann Uwe,Mienkus Peter,Sternisek Pia,Perl Thorsten,Weig Michael,Urlaub Henning,Bader Oliver,Kollmar MartinORCID

Abstract

Abstract Background Yeasts of the CTG-clade lineage, which includes the human-infecting Candida albicans, Candida parapsilosis and Candida tropicalis species, are characterized by an altered genetic code. Instead of translating CUG codons as leucine, as happens in most eukaryotes, these yeasts, whose ancestors are thought to have lost the relevant leucine-tRNA gene, translate CUG codons as serine using a serine-tRNA with a mutated anticodon, $$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$ tRNA CAG Ser . Previously reported experiments have suggested that 3–5% of the CTG-clade CUG codons are mistranslated as leucine due to mischarging of the $$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$ tRNA CAG Ser . The mistranslation was suggested to result in variable surface proteins explaining fast host adaptation and pathogenicity. Results In this study, we reassess this potential mistranslation by high-resolution mass spectrometry-based proteogenomics of multiple CTG-clade yeasts, including various C. albicans strains, isolated from colonized and from infected human body sites, and C. albicans grown in yeast and hyphal forms. Our data do not support a bias towards CUG codon mistranslation as leucine. Instead, our data suggest that (i) CUG codons are mistranslated at a frequency corresponding to the normal extent of ribosomal mistranslation with no preference for specific amino acids, (ii) CUG codons are as unambiguous (or ambiguous) as the related CUU leucine and UCC serine codons, (iii) tRNA anticodon loop variation across the CTG-clade yeasts does not result in any difference of the mistranslation level, and (iv) CUG codon unambiguity is independent of C. albicans’ strain pathogenicity or growth form. Conclusions Our findings imply that C. albicans does not decode CUG ambiguously. This suggests that the proposed misleucylation of the $$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$ tRNA CAG Ser might be as prevalent as every other misacylation or mistranslation event and, if at all, be just one of many reasons causing phenotypic diversity.

Funder

Max Planck Institute of Biophysical Chemistry (MPI-BPC)

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3