Comparative genomic analysis of Babesia duncani responsible for human babesiosis

Author:

Wang Jinming,Chen Kai,Yang Jifei,Zhang Shangdi,Li Youquan,Liu Guangyuan,Luo Jianxun,Yin Hong,Wang Guangying,Guan Guiquan

Abstract

Abstract Background Human babesiosis, caused by parasites of the genus Babesia, is an emerging and re-emerging tick-borne disease that is mainly transmitted by tick bites and infected blood transfusion. Babesia duncani has caused majority of human babesiosis in Canada; however, limited data are available to correlate its genomic information and biological features. Results We generated a B. duncani reference genome using Oxford Nanopore Technology (ONT) and Illumina sequencing technology and uncovered its biological features and phylogenetic relationship with other Apicomplexa parasites. Phylogenetic analyses revealed that B. duncani form a clade distinct from B. microti, Babesia spp. infective to bovine and ovine species, and Theileria spp. infective to bovines. We identified the largest species-specific gene family that could be applied as diagnostic markers for this pathogen. In addition, two gene families show signals of significant expansion and several genes that present signatures of positive selection in B. duncani, suggesting their possible roles in the capability of this parasite to infect humans or tick vectors. Conclusions Using ONT sequencing and Illumina sequencing technologies, we provide the first B. duncani reference genome and confirm that B. duncani forms a phylogenetically distinct clade from other Piroplasm parasites. Comparative genomic analyses show that two gene families are significantly expanded in B. duncani and may play important roles in host cell invasion and virulence of B. duncani. Our study provides basic information for further exploring B. duncani features, such as host-parasite and tick-parasite interactions.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3