A high-resolution melting approach for the simultaneous differentiation of five human babesiosis–causing Babesia species

Author:

Wang Yanbo,Zhang Shangdi,Li Xiaoyun,Nian Yueli,Liu Xinyue,Liu Junlong,Yin Hong,Guan Guiquan,Wang Jinming

Abstract

Abstract Background Six species of apicomplexan parasites of the genus Babesia, namely B. microti, B. divergens, B. duncani, B. motasi, B. crassa–like and B. venatorum, are considered to be the primary causal agents of human babesiosis in endemic areas. These six species possess variable degrees of virulence for their primary hosts. Therefore, the accurate identification of these species is critical for the adoption of appropriate therapeutic strategies. Methods We developed a real-time PCR–high-resolution melting (qPCR-HRM) approach targeting 18S ribosomal RNA gene of five Babesia spp. based on melting temperature (Tm) and genotype confidence percentage values. This approach was then evaluated using 429 blood samples collected from patients with a history of tick bites, 120 DNA samples mixed with plasmids and 80 laboratory-infected animal samples. Results The sensitivity and specificity of the proposed qPCR-HRM method were 95% and 100%, respectively, and the detection limit was 1–100 copies of the plasmid with the cloned target gene. The detection level depended on the species of Babesia analyzed. The primers designed in this study ensured not only the high interspecific specificity of our proposed method but also a high versatility for different isolates from the same species worldwide. Additionally, the Tm obtained from the prepared plasmid standard is theoretically suitable for identifying isolates of all known sequences of the five Babesia species. Conclusions The developed detection method provides a useful tool for the epidemiological investigation of human babesiosis and pre-transfusion screening. Graphical Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu, China

The Agricultural Science and Technology Innovation Program

National Key Research and Development Program of China

NBCIS

National Parasitic Resources Center

the Leading Fund of Lanzhou Veterinary Research Institute, China

the hatching program of State Key Laboratory of Veterinary Etiological Biology, China

the Science Fund for Creative Research Groups of Gansu Province, China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology,General Veterinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3