Author:
Yan Jin,Zhang Liqiang,Li Xianjun,Wu Qingding,Liu Jianan
Abstract
AbstractBinderless poplar/bismuth oxide wood alloy is prepared using the warm-press forming technology. The effect of the forming temperatures on color changes and mechanical properties of the poplar/bismuth oxide wood alloy is studied. The results show that the surface color of the specimen gradually darkened as the forming temperature increased. There is the most obvious change from 140 to 160 °C. The CIE lightness color coordinate L* and chroma coordinate b* decrease with the increase of the forming temperature, while chroma coordinate a* decreases initially, but later increases with treatment severity. The static bending strength (MOR), the elastic modulus (MOE) and the surface hardness (HV) increase first and then decrease with the increase of the forming temperature. The X-ray diffraction (XRD) analysis shows that the wood underwent carbonization at 180 °C, resulting in a decrease in the density and mechanical properties of poplar/bismuth oxide wood alloy, and a deepening of the surface color. The Fourier transform infrared spectroscopy (FTIR) analysis reveals that the pyrolysis of cellulose and hemicellulose, as well as the pyrolysis and condensation of lignin led to the color of poplar/bismuth oxide wood alloy deepening. The hydroxyl groups between the cellulose molecular chains are reduced and hydrogen bonds are formed at 140 °C, which improve the mechanical properties of poplar/bismuth oxide wood alloy. However, the massive degradation of hemicellulose weakens binding strength with cellulose and lignin at 160 °C above. It greatly reduces the mechanical properties of specimen.
Funder
the Changsha Municipal Nature Science Foundation
the National Natural Science Foundation of China
the Scientific Research Project of Hunan Provincial Department of Education
the Scientific Innovation Fund for Post-graduates of Hunan Provincial
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献