Research on the Vibration Fatigue Characteristics of Ancient Building Wood Materials

Author:

Qian Chunyu12,Li Mingze1,Liao Hongjian1,Zhang Chenhe1,Li Hangzhou1

Affiliation:

1. School of Human Settlement and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. China JIKAN Research Institute of Engineering Investigations and Design, Co., Ltd., Xi’an 710032, China

Abstract

In this study, we selected ancient building timber as the research object. A series of static load tests were conducted to analyze the different performances of timber under tensile and compressive loads. After that, vibration fatigue tests on ancient timber samples were carried out under different upper limit stress ratios. Finally, a dynamic constitutive model of ancient timber was established based on the Ramberg–Osgood model. The static load test results show that the tensile strength was approximately 80% of the compressive strength. Meanwhile, the samples that failed under compressive pressure had obvious residual strength, and their failure strains were also much larger than those under tensile stress. In the vibration fatigue tests, the stress–strain curves were analyzed and the results showed that the curves displayed a trend moving to sparse from dense during the loading process. Meanwhile, the curves moved right with the increase in the upper limit stress ratios. The relationship between axial strain and the number of cycles appeared to be characterized by a three-stage form, i.e., damage occurrence, damage expansion, and damage penetration, and this relationship was formulated by a nonlinear function model. Finally, a dynamic constitutive model with high accuracy in describing the vibration fatigue characteristics of ancient timber was established by converting constant parameters to the variable parameters of the Ramberg–Osgood model.

Funder

China JIKAN Research Institute of Engineering Investigations and Design, Co., Ltd

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3