Feature importance measures from random forest regressor using near-infrared spectra for predicting carbonization characteristics of kraft lignin-derived hydrochar

Author:

Hwang Sung-Wook,Chung Hyunwoo,Lee Taekyeong,Kim Jungkyu,Kim YunJin,Kim Jong-Chan,Kwak Hyo Won,Choi In-Gyu,Yeo Hwanmyeong

Abstract

AbstractThis study investigated the feature importance of near-infrared spectra from random forest regression models constructed to predict the carbonization characteristics of hydrochars produced by hydrothermal carbonization of kraft lignin. The model achieved high coefficients of determination of 0.989, 0.988, and 0.985 with root mean square errors of 0.254, 0.003, and 0.008 when predicting the carbon content, atomic O/C ratio, and H/C ratio, respectively. The random forest models outperformed the multilayer perceptron models for all predictions. In the feature importance analysis, the spectral regions at 1600–1800 nm, the first overtone of C–H stretching vibrations, and 2000–2300 nm, the combination bands, were highly important for predicting the carbon content and O/C predictions, whereas the region at 1250–1711 nm contributed to predicting H/C. The random forest models trained with the high-importance regions achieved better prediction performances than those trained with the entire spectral range, demonstrating the usefulness of the feature importance yielded by the random forest and the feasibility of selective application of the spectral data.

Funder

Korea Forest Service

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials,Forestry

Reference38 articles.

1. Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis M, Lonnoy E, Maycock T, Tignor M, Waterfield T (2018) Global Warming of 1.5°C in an IPCC Special Report on the Impacts of Global Warming of 1.5°C. Intergovernmental Panel on Climate Change

2. Atta-Obeng E, Dawson-Andoh B, Seehra MS, Geddam U, Poston J, Leisen J (2017) Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization. Biomass Bioenerg 107:172–181. https://doi.org/10.1016/j.biombioe.2017.09.023

3. Borrero-López AM, Masson E, Celzard A, Fierro V (2018) Modelling the reactions of cellulose, hemicellulose, and lignin submitted to hydrothermal treatment. Ind Crops Prod 124:919–930. https://doi.org/10.1016/j.indcrop.2018.08.045

4. Davies G, El Sheikh A, Collett C, Yakub I, McGregor J (2021) Catalytic carbon materials from biomass. In: Sadjadi S (ed) Emerging carbon materials for catalysis. Elsevier, Amsterdam

5. Yoganandham ST, Sathyamoorthy G, Renuka RR (2020) Emerging extraction techniques: hydrothermal processing. In: Torres MD, Kraan S, Dominguez H (eds) Sustainable seaweed technologies. Elsevier, Amsterdam

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3