A novel multi-model estimation of phosphorus in coal and its ash using FTIR spectroscopy

Author:

Vinod Arya,Prasad Anup Krishna,Mishra Sameeksha,Purkait Bitan,Mukherjee Shailayee,Shukla Anubhav,Desinayak Nirasindhu,Sarkar Bhabesh Chandra,Varma Atul Kumar

Abstract

AbstractThe level of phosphorus must be carefully monitored for proper and effective utilization of coal and coal ash. The phosphorus content needs to be assessed to optimize combustion efficiency and maintenance costs of power plants, ensure quality, and minimize the environmental impact of coal and coal ash. The detection of low levels of phosphorus in coal and coal ash is a significant challenge due to its complex chemical composition and low concentration levels. Effective monitoring requires accurate and sensitive equipment for the detection of phosphorus in coal and coal ash. X-ray fluorescence (XRF) is a commonly used analytical technique for the determination of phosphorus content in coal and coal ash samples but proves challenging due to their comparatively weak fluorescence intensity. Fourier Transform Infrared spectroscopy (FTIR) emerges as a promising alternative that is simple, rapid, and cost-effective. However, research in this area has been limited. Until now, only a limited number of research studies have outlined the estimation of major elements in coal, predominantly relying on FTIR spectroscopy. In this article, we explore the potential of FTIR spectroscopy combined with machine learning models (piecewise linear regression—PLR, partial least square regression—PLSR, random forest—RF, and support vector regression—SVR) for quantifying the phosphorus content in coal and coal ash. For model development, the methodology employs the mid-infrared absorption peak intensity levels of phosphorus-specific functional groups and anionic groups of phosphate minerals at various working concentration ranges of coal and coal ash. This paper proposes a multi-model estimation (using PLR, PLSR, and RF) approach based on FTIR spectral data to detect and rapidly estimate low levels of phosphorus in coal and its ash (R$$^2$$ 2 of 0.836, RMSE of 0.735 ppm, RMSE (%) of 34.801, MBE of − 0.077 ppm, MBE (%) of 5.499, and MAE of 0.528 ppm in coal samples and R$$^2$$ 2 of 0.803, RMSE of 0.676 ppm, RMSE (%) of 38.050, MBE of − 0.118 ppm, MBE (%) of 4.501, and MAE of 0.474 ppm in coal ash samples). Our findings suggest that FTIR combined with the multi-model approach combining PLR, PLSR, and RF regression models is a reliable tool for rapid and near-real-time measurement of phosphorus in coal and coal ash and can be suitably modified to model phosphorus content in other natural samples such as soil, shale, etc.

Funder

SERB, DST

DST-FIST Level-II Facility

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3