Abstract
AbstractWood-based panels are made by consolidating mats of resinous wooden raw materials under a hot-pressing process. This study investigates the effect of face-layer moisture content (MC) and face–core–face (FCF) ratio of mats on the temperature and vapor pressure behavior during the hot-pressing process. Raising the face-layer MC and lowering the face-layer thickness was expected to reduce the time of reaching 100 °C in the hot-pressing process. When the temperature rise was limited or the core temperature decreased after reaching 100 °C (defined as plateau in this study), the mats with 25% and 30% face-layer MC with 1:2:1 FCF ratio reached the highest plateau core temperature, but required a longer time to complete the plateau. The relationship between core plateau temperature and maximum core vapor pressure was well described by the Antoine equation, which empirically models the vapor pressure as a function of temperature. The Antoine equation held across both face-layer MC series (varying face-layer MC at constant FCF ratio) and FCF series (varying FCF ratio at constant face-layer MC). The mat with 20% face-layer MC and 1:2:1 FCF ratio reached 180 °C within the shortest time, regardless of the evaluation conditions.
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Dai C, Steiner PR (1993) Compression behavior of randomly-formed wood flake mats. Wood Fiber Sci 25(4):349–358
2. Zhou C, DaiSmith CG (2008) A generalized mat consolidation model for wood composites. Holzforschung 62:201–208. https://doi.org/10.1515/HF.2008.053
3. Dai C, Tu C, Hubert P (2000) Modeling Vertical Density Profile in Wood Composite Boards. In: Proceedings of the 5th Pacific Rim Bio-based Composites Symposium, Canberra, Australia, 10–14 December 2000
4. Zhou C, Smith G, Dai C (2010) Characterizing hydro-thermal compression behavior of aspen wood strands. Holzforschung 63:609–617. https://doi.org/10.1515/HF.2009.111
5. Dai C, Yu C, Zhou C (2007) Theoretical modeling of bonding characteristics and performance of wood composites: part 1. Inter-element contact. Wood Fiber Sci 39(1):48–55
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献