Changes in Temperature and Vapor-Pressure Behavior of Bamboo Scrimber in Response to Hot-Pressing Parameters

Author:

Ge Yanglin1,Lu Tong12,Li Xingong1,Hao Xiaofeng1,Yang Shoulu3,Lu Tonghua2,Xu Kang1,Li Xianjun1

Affiliation:

1. College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. Treezo Research Department, Treezo New Material Technology Group Co., Ltd., Hangzhou 311100, China

3. Forestry Industry Research Department, Guizhou Academy of Forestry, Guiyang 550005, China

Abstract

This study investigated the heat-transfer behavior of heat-treated and phenolic resin-impregnated bamboo bundle slabs during the hot-pressing process. The significance of these findings lies in their potential to drive advancements in hot-pressing technology, contribute to energy-conservation efforts, and facilitate emission reduction within the bamboo scrimber industry. In this study, the variations in temperature and vapor pressure were investigated during the hot-pressing of bamboo slabs under various conditions, including hot-pressing temperatures (140 °C, 150 °C, 160 °C, and 170 °C), hot-pressing holding times (15 min, 20 min, 25 min, and 30 min), and hot-pressing pressures (4 MPa, 5 MPa, 6 MPa, and 7 MPa). This was achieved using thermocouple sensors and a self-made vapor pressure-monitoring system. The results indicated that higher hot-pressing temperatures significantly increased the heating rate, peak temperature, and core-layer vapor peak pressure of the bamboo bundle slab, with the vapor peak pressure at 170 °C being twice that at 140 °C. Furthermore, extending the holding time had a lesser effect on increasing the peak temperature of the slab but significantly increased the peak vapor pressure in the core layer. Thus, increasing the hot-pressing pressure proved beneficial for slab heating but had a lesser effect on the surface and core-layer peak temperatures. The core-layer vapor pressure of the slab subjected to a hot-press pressure of 7 MPa was 1.8 times higher than that at 4 MPa.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province, China

General Program of the National Natural Science Foundation of Hunan Province, China

Top-quality Innovative Talents Program in Guizhou Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3