Oleanolic acid attenuates renal fibrosis in mice with unilateral ureteral obstruction via facilitating nuclear translocation of Nrf2

Author:

Chung Sungjin,Yoon Hye Eun,Kim Soo Jeong,Kim Sung Jun,Koh Eun Sil,Hong Yu Ah,Park Cheol Whee,Chang Yoon Sik,Shin Seok Joon

Abstract

Abstract Background Renal interstitial fibrosis is a common final pathological process in the progression of kidney disease. This is primarily due to oxidative stress, which contributes to renal inflammation and fibrosis. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is known to coordinate induction of genes that encode antioxidant enzymes. We investigated the effects of oleanolic acid, a known Nrf2 activator, on oxidative stress-induced renal inflammation and fibrosis. Methods One day before unilateral ureteral obstruction (UUO) performed in C57BL/6 mice, oleanolic acid treatment was initiated and was continued until 3 and 7 days after UUO. Renal inflammation and fibrosis, markers of oxidative stress, and changes in Nrf2 expression were subsequently evaluated. Results In the obstructed kidneys of UUO mice, oleanolic acid significantly attenuated UUO-induced collagen deposition and fibrosis on day 7. Additionally, significantly less inflammatory cell infiltration, a lower ratio of Bax to Bcl-2 expression, and fewer apoptotic cells on TUNEL staining were observed in the obstructed kidneys of oleanolic acid-treated mice. Oleanolic acid increased the expression of nuclear Nrf2, heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and heat shock protein 70, and decreased lipid peroxidation in the obstructed kidney of UUO mice. There were no changes in the expression of total Nrf2 and Kelch-like ECH-associated protein 1, indicating that oleanolic acid enhanced nuclear translocation of Nrf2. Conclusions These results suggest that oleanolic acid may exert beneficial effects on renal fibrosis by increasing nuclear translocation of Nrf2 and subsequently reducing renal oxidative stress.

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3