The Protective Effect of Zebularine, an Inhibitor of DNA Methyltransferase, on Renal Tubulointerstitial Inflammation and Fibrosis

Author:

Koh Eun SilORCID,Kim Soojeong,Son Mina,Park Ji-Young,Pyo Jaehyuk,Kim Wan-Young,Kim Minyoung,Chung SungjinORCID,Park Cheol Whee,Kim Ho-Shik,Shin Seok Joon

Abstract

Renal fibrosis, the final pathway of chronic kidney disease, is caused by genetic and epigenetic mechanisms. Although DNA methylation has drawn attention as a developing mechanism of renal fibrosis, its contribution to renal fibrosis has not been clarified. To address this issue, the effect of zebularine, a DNA methyltransferase inhibitor, on renal inflammation and fibrosis in the murine unilateral ureteral obstruction (UUO) model was analyzed. Zebularine significantly attenuated renal tubulointerstitial fibrosis and inflammation. Zebularine decreased trichrome, α-smooth muscle actin, collagen IV, and transforming growth factor-β1 staining by 56.2%. 21.3%, 30.3%, and 29.9%, respectively, at 3 days, and by 54.6%, 41.9%, 45.9%, and 61.7%, respectively, at 7 days after UUO. Zebularine downregulated mRNA expression levels of matrix metalloproteinase (MMP)-2, MMP-9, fibronectin, and Snail1 by 48.6%. 71.4%, 31.8%, and 42.4%, respectively, at 7 days after UUO. Zebularine also suppressed the activation of nuclear factor-κB (NF-κB) and the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, by 69.8%, 74.9%, and 69.6%, respectively, in obstructed kidneys. Furthermore, inhibiting DNA methyltransferase buttressed the nuclear expression of nuclear factor (erythroid-derived 2)-like factor 2, which upregulated downstream effectors such as catalase (1.838-fold increase at 7 days, p < 0.01), superoxide dismutase 1 (1.494-fold increase at 7 days, p < 0.05), and NAD(P)H: quinone oxidoreduate-1 (1.376-fold increase at 7 days, p < 0.05) in obstructed kidneys. Collectively, these findings suggest that inhibiting DNA methylation restores the disrupted balance between pro-inflammatory and anti-inflammatory pathways to alleviate renal inflammation and fibrosis. Therefore, these results highlight the possibility of DNA methyltransferases as therapeutic targets for treating renal inflammation and fibrosis.

Funder

National Research Foundation of Korea

Institute of Clinical Medicine Research in the Yeouido St. Mary’s Hospital

Institute for Bio-Medical convergence, Incheon St. Mary’s Hospital, at the Catholic University of Korea

Catholic Alumni of Nephrologist

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sex-specific epigenetic programming in renal fibrosis and inflammation;American Journal of Physiology-Renal Physiology;2023-11-01

2. Editorial: Chronic Inflammation and Related Diseases: From Mechanisms to Therapies;International Journal of Molecular Sciences;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3