Author:
Li Pan,Hao Yang,Wu Yu,Wanniarachchi Ayal,Zhang Hongxue,Cui Zhili
Abstract
AbstractA CO2-based Enhanced Geothermal System (CO2-EGS) has dual benefits of heat extraction and CO2 storage. Mineralization storage of CO2 may reduce reservoir permeability, thereby affecting heat extraction. Solutions require further research to optimize and balance these two benefits. In this study, CO2 storage and heat extraction were simulated by alternating cyclic injection of water and supercritical CO2 into fractured granite. By analyzing the changes of ion composition in water samples and the minerals of fracture surface, the mechanisms controlling the fracture permeability with and without proppant were obtained. The results suggest that monticellite and vaterite were formed besides montmorillonite, calcite and illite after increasing the injection cycles. This promotes mineralization storage of CO2 but reduces reservoir permeability. Without proppant, the permeability decreased in three stages and the reduction rate exhibited a sharp-slow–fast–slow trend. While the use of proppant caused an increase of two orders of magnitude in permeability. Therefore, increasing the non-contact area of the main fracture and the CO2 flow velocity can avoid a large decrease in permeability, which will increase the heat extraction and mineralization storage of CO2. The findings provide solutions for the CO2 emission reduction and the efficient exploitation of hot dry rock.
Funder
Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology
State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology
Anhui University Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献