Study on the evolution of mechanical properties of hot dry rocks after supercritical CO2 injection

Author:

Li Pan,Zhang Hongxue,Wu Yu

Abstract

AbstractCharacterizing the evolution of mechanical properties of hot dry rock (HDR) after supercritical CO2 (CO2(sc)) injection is crucial for assessing the heat extraction rate and reservoir security of CO2 based enhanced geothermal systems. This study designed the experiments of triaxial seepage and mechanical properties considering no CO2(sc) injection, CO2(sc) injection, and alternating injection of water-CO2(sc) (AIWC) in granite at 150–300 ℃. The experiments can reveal the mechanical properties of HDR in single-phase CO2 zone, CO2-water two-phase zone and dissolved CO2 liquid phase zone in HDR reservoir. The results indicate that the failure mode of the rock samples primarily exhibits sudden instability after no CO2(sc) injection and AIWC, whereas it predominantly manifests progressive instability after CO2(sc) injection. Compared with 25 ℃, the uniaxial compressive strength (UCS) after no CO2(sc) injection at 150–300 ℃ decreased by 13.86%–32.92%. After CO2(sc) injection, the UCS decreased by 40.79%–59.60%. After AIWC, the UCS decreased by 27.74–40.48%. This shows that the strength of rock mass in the single-phase CO2 zone is lower than that in the other two zones, and this weakening phenomenon increases with the increase of temperature difference. At the same temperature, the elasticity modulus after AIWC was greater than that after no CO2(sc) injection and CO2(sc) injection. With no CO2(sc) injection, when the temperature was increased to 200 ℃ and 300 ℃, intergranular cracks and transgranular appeared respectively. After AIWC, mineral crystals such as calcite were precipitated on the surfaces of the connected large cracks, accompanied by kaolinite clay minerals. This increases the frictional contact of the mineral particles and enhances the stability of the HDR reservoir.

Funder

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology

State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology

National Natural Science Foundation of China

Anhui University Natural Science Foundation

College students’ innovation and entrepreneurship training program of Anhui Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3