Geothermal resource assessment of remote sedimentary basins with sparse data: lessons learned from Anticosti Island, Canada

Author:

Gascuel ViolaineORCID,Bédard Karine,Comeau Félix-Antoine,Raymond Jasmin,Malo Michel

Abstract

AbstractAnticosti Island is located in the Anticosti sedimentary basin, an Ordovician/Silurian carbonate platform. This platform is mainly composed of limestone and shale with some dolomite and sandstone and reaches up to 5 km depth in the southwest. It overlies a Precambrian basement of the Grenville Province made of magmatic and metamorphic rocks. Like most remote and off-grid regions in Canada, it relies heavily on fossil fuels for energy supplies. An assessment of deep geothermal resources was achieved in this area with the objective of diversifying energy resources to help develop renewable energy for villages deserved by micro-grid systems. Despite sparse and low-quality bottom-hole data (15 wells of 1111 m to 2762 m depth), a 3D temperature model was developed for this sedimentary basin and its underlying Precambrian basement up to 40 km (mantle depth). Quantifying confidence intervals for thermal parameters, namely bottom-hole temperature, thermal conductivity, heat generation rate and mantle heat flux, was paramount to obtain a reliable range of temperature predictions. A high variability of modeled temperature, up to 41% at the base of the sedimentary basin and 70% at mantle depth, remains when trying to constrain input parameters. The lack of equilibrium temperature measurements at depth affects the temperature predictions, both in the sedimentary basin and the Precambrian basement. It is an important issue to solve in further studies. Furthermore, knowledge of the thermal properties of the Precambrian basement of the Grenville Province and its geometry is poor. In addition, there is a wide confidence interval on thermal conductivity of specific lithologies in the Anticosti sedimentary basin. It has a significant impact on temperature predictions at depth and should be improved for studies focusing on electricity production. Despite a wide confidence interval on temperature predictions, geothermal electricity generation from reservoirs at 120 °C or more appears difficult in the current technical and economic context. Electricity generation at a low temperature with an inlet of 70 °C could be achieved at a reservoir depth of 2–4 km, but with a net efficiency of 10–11% (considering a flow rate of 40 l s−1 and a cooling temperature of 5 °C). Direct use of geothermal heat from the deepest part of the sedimentary basin seems to be the most realistic option, provided that sufficiently permeable horizons can be found.

Funder

Fonds de recherche du Québec - Nature et technologies

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3