Crystallization of calcium carbonate in a large-scale push–pull heat storage test in the Upper Jurassic carbonate aquifer

Author:

Ueckert MartinaORCID,Wismeth Carina,Baumann Thomas

Abstract

AbstractCrystallization of carbonates is a key process affecting the operation of geothermal facilities and aquifer heat storage systems. The crystals formed in an aquifer heat storage test in the Upper Jurassic carbonate aquifer were investigated at injection temperatures of $$65\,^{\circ }\hbox {C}$$65C to $$110\,^{\circ }\hbox {C}$$110C, with varying $$\hbox {CO}_{2}$$CO2 partial pressures, and varying Mg/Ca ratios. Water samples were directly filtrated, and analyzed by SEM/EDX. Complementary autoclave experiments were run. In the autoclave experiments with tap water, aragonite crystals dominated at all temperatures (45–110$$\,^{\circ }\hbox {C}$$C). In the autoclave experiments with ultra-pure water, calcite crystals dominated at the same temperatures. In the field test, mainly calcite crystals were found up to temperatures of $$90\,^{\circ }\hbox {C}$$90C. Only at very high temperatures of $$110\,^{\circ }\hbox {C}$$110C aragonite crystallization prevailed. $$\hbox {CO}_{2}$$CO2 partial pressure varied especially between injection and production stages. Mg/Ca ratio varied through all stages, and depended on the dissolution of the rock matrix. Together with the autoclave experiments, this study suggest that temperature and Mg/Ca ratio had no influence on the crystallization, and only supersaturation affected the $$\hbox {CaO}_{3}$$CaO3 polymorphs. We further assume that we produced initially injected crystals back during the following production stage. That results in the assumption that existing particles can maintain an equilibrium in the dispersion, and reduce precipitation on surfaces like pipes and heat exchangers.

Funder

Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie

BWM Group

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3