Quantification of the effect of gas–water–equilibria on carbonate precipitation

Author:

Zacherl Lilly,Baumann ThomasORCID

Abstract

AbstractThe expanding geothermal energy sector still faces performance issues due to scalings in pipes and surface level installations, which require elevated operation pressure levels and costly maintenance. For facilities in the North Alpine Foreland Basin, the precipitation of $${\hbox {CaCO}}_{3}$$ CaCO 3 is the main problem which is a consequence of the disruption of the lime-carbonic acid equilibrium during production. The formation of gas bubbles plays a key role in the scaling process. This work presents experiments in a bubble column to quantify the effects of gas stripping on carbonate precipitation and an extension of PhreeqC to include kinetic exchange between a gas phase and water for the simulation of the experimental results. With the same hybrid model not only precipitation of $${\hbox {CaCO}}_{3}$$ CaCO 3 but also the dissolution of scalings by the injection of $${\hbox {CO}}_{2}$$ CO 2 could be quantified. The bubble column was filled with tap water and brine. By varying the ionic strength of the solution, a wider range of geothermal waters was covered. Air and $${\hbox {CO}}_{2}$$ CO 2 were introduced at the bottom. The precipitates built on the column wall were analyzed with Raman spectroscopy: injecting air into tap water at low ionic strength led to the formation of aragonite with 59.8% of the precipitates remaining at the column wall and the rest as particles in dispersion. At moderate ionic strength the dominant polymorph was calcite and 81.5% of the crystals were attached to the wall. At high ionic strength precipitation was inhibited. The presence of crystallization nuclei reduced the time for precipitation, but not the amount of scalings formed. Injecting $${\hbox {CO}}_{2}$$ CO 2 into the solution completely removed the scalings from the column wall. The model and its experimental backup lay the foundation for a process-based prediction of the scales (not only) in geothermal systems.

Funder

Bundesministerium für Wirtschaft und Energie

Bayerisches Staatsministerium für Wissenschaft und Kunst

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3