Evaluation of deep geothermal exploration drillings in the crystalline basement of the Fennoscandian Shield Border Zone in south Sweden

Author:

Rosberg Jan-ErikORCID,Erlström Mikael

Abstract

AbstractThe 3.1- and 3.7-km-deep FFC-1 and DGE-1 geothermal explorations wells drilled into the Precambrian crystalline basement on the southern margin of the Fennoscandian Shield are evaluated regarding experiences from drilling, geological conditions, and thermal properties. Both wells penetrate an approximately 2-km-thick succession of sedimentary strata before entering the crystalline basement, dominated by orthogneiss, metabasite and amphibolite of the (1.1–0.9 Ga) Eastern Interior Sveconorwegian Province. The upper c. 400 m of the basement is in FFC-1 severely fractured and water-bearing which disqualified the use of percussion air drilling and conventional rotary drilling was, therefore, performed for the rest of the borehole. The evaluation of the rotary drillings in FFC-1 and DGE-1 showed that the average bit life was very similar, 62 m and 68 m, respectively. Similarly, the average ROP varied between 2 and 4 m/h without any preferences regarding bit-type (PDC or TCI) or geology. A bottomhole temperature of 84.1 °C was measured in FFC-1 borehole with gradients varying between 17.4 and 23.5 °C/km for the main part of the borehole. The calculated heat flow varies between 51 and 66 mW/m2 and the average heat production is 3.0 µW/m3. The basement in FFC-1 is, overall, depleted in uranium and thorium in comparison to DGE-1 where the heat productivity is overall higher with an average of 5.8 µW/m3. The spatial distribution of fractures was successfully mapped using borehole imaging logs in FFC-1 and shows a dominance of N–S oriented open fractures, a fracture frequency varying between 0.85 and 2.49 frac/m and a fracture volumetric density between 1.68 and 3.39 m2/m3. The evaluation of the two boreholes provides insight and new empirical data on the thermal properties and fracturing of the concealed crystalline basement in the Fennoscandian Shield Border Zone that, previously, had only been assessed by assumptions and modelling. The outcome of the drilling operation has also provided insight regarding the drilling performance in the basement and statistical data on various drill bits used. The knowledge gained is important in feasibility studies of deep geothermal projects in the crystalline basement in south Sweden.

Funder

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

Reference61 articles.

1. Aldahan AA, Castañ J, Collini B, Gorody T, Juhlin C, Sandstedt H. Scientific summary report of the deep gas drilling project in the Siljan Ring Impact structure. Vattenfall Rep. p. 1–257. 1991.

2. Allis R, Moore J, Davatzes N, Gwynn M, Hardwick C, Kirby S, McLennan J, Pankow, K, Potter S, Simmons, S. EGS concept testing and development at the Milford, Utah FORGE Site. In: proceedings, 41st Workshop on geothermal reservoir engineering Stanford University, Stanford, California, February 22–24, 2016 SGP-TR-209. p. 13. 2016.

3. Andersson O. Deep drilling KLX 02-drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden. SKB Rep TR 94-19. p. 46. 1994.

4. Armstead HCH, Tester JW. Heat mining. London: E. and F. N. Spon; 1987.

5. Arshavskaya NI, Galdin NE, Karus EW, Kuznetsov OL, Lubimova EA, Milanovsky SY, Nartikoev VD, Semashko SA, Smirnova EV. Geothermic investigations. In: Kozlovsky YA, editor. The superdeep well of the Kola Peninsula. Berlin: Springer; 1984. p. 387–93.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3