The dual pro-inflammatory and bone-protective role of calcitonin gene-related peptide alpha in age-related osteoarthritis

Author:

Hildebrandt AlexanderORCID,Dietrich TamaraORCID,Weber JérômeORCID,Günderoth Mara MeyerORCID,Zhou SijiaORCID,Fleckenstein Florian N.ORCID,Jiang ShanORCID,Winkler TobiasORCID,Duda Georg N.ORCID,Tsitsilonis SerafeimORCID,Keller JohannesORCID,Maleitzke TazioORCID

Abstract

Abstract Background The vasoactive neuropeptide calcitonin gene-related peptide alpha (αCGRP) enhances nociception in primary knee osteoarthritis (OA) and has been shown to disrupt cartilage and joint integrity in experimental rheumatoid arthritis (RA). Little is known about how αCGRP may alter articular structures in primary OA. We investigated whether αCGRP modulates local inflammation and concomitant cartilage and bone changes in a murine model of age-dependent OA. Methods Sixteen- to 18-month-old αCGRP-deficient mice (αCGRP−/−aged) were compared to, first, age-matched wild type (WTaged) and, second, young 4- to 5-month-old non-OA αCGRP-deficient (αCGRP−/−CTRL) and non-OA WT animals (WTCTRL). αCGRP levels were measured in serum. Knee and hip joint inflammation, cartilage degradation, and bone alterations were assessed by histology (OARSI histopathological grading score), gene expression analysis, and µ-computed tomography. Results WTaged mice exhibited elevated αCGRP serum levels compared to young WTCTRL animals. Marked signs of OA-induced cartilage destruction were seen in WTaged animals, while αCGRP−/−aged mice were mostly protected from this effect. Age-dependent OA was accompanied by an increased gene expression of pro-inflammatory Tnfa, Il1b, and Il6 and catabolic Mmp13, Adamts5, Ctsk, Tnfs11 (Rankl), and Cxcl12/Cxcr4 in WTaged but not in αCGRP−/−aged mice. αCGRP-deficiency however further aggravated subchondral bone sclerosis of the medial tibial plateau and accelerated bone loss in the epi- and metaphyseal trabecular tibial bone in age-dependent OA. Conclusions Similar to its function in experimental RA, αCGRP exerts a dual pro-inflammatory and bone-protective function in murine primary OA. Although anti-CGRP treatment was previously not successful in reducing pain in OA clinically, these data underline a crucial pathophysiological role of αCGRP in age-related OA.

Funder

Deutsche Forschungsgemeinschaft

Else Kröner-Fresenius-Stiftung

Stiftung Oskar-Helene-Heim

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3