Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis

Author:

Ashraf Sadaf,Wibberley Helen,Mapp Paul Ian,Hill Roger,Wilson Deborah,Walsh David Andrew

Abstract

ObjectivesMeniscal damage is a recognised feature of knee osteoarthritis (OA), although its clinical relevance remains uncertain. This study describes vascular penetration and nerve growth in human menisci, providing a potential mechanism for the genesis of pain in knee OA.MethodsMenisci obtained post mortem were screened on the basis of high or low macroscopic tibiofemoral chondropathy as a measure of the presence and degree of OA. Forty cases (20 per group) were selected for the study of meniscal vascularity, and 16 (eight per group) for the study of meniscal innervation. Antibodies directed against α-actin and calcitonin gene-related peptide (CGRP) were used to localise blood vessels and nerves by histochemistry. Image analysis was used to compare vascular and nerve densities between groups. Data are presented as median (IQR).ResultsMenisci from knees with high chondropathy displayed degeneration of collagen bundles in their outer regions, which were more vascular than the inner regions, with an abrupt decrease in vascularity at the fibrocartilage junction. Vascular densities were increased in menisci from the high compared with low chondropathy group both in the synovium (3.8% (IQR 2.6–5.2), 2.0% (IQR 1.4–2.9), p=0.002) and at the fibrocartilage junction (2.3% (IQR 1.7–3.1), 1.1% (IQR 0.8–1.9), p=0.003), with a greater density of perivascular sensory nerve profiles in the outer region (high chondropathy group, 144 nerve profiles/mm2 (IQR 134–189); low chondropathy group, 119 nerve profiles/mm2 (IQR 104–144), p=0.049).ConclusionTibiofemoral chondropathy is associated with altered matrix structure, increased vascular penetration, and increased sensory nerve densities in the medial meniscus. The authors suggest therefore that angiogenesis and associated sensory nerve growth in menisci may contribute to pain in knee OA.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3