Author:
Ágg Bence,Szilveszter Bálint,Daradics Noémi,Benke Kálmán,Stengl Roland,Kolossváry Márton,Pólos Miklós,Radovits Tamás,Ferdinandy Péter,Merkely Béla,Maurovich-Horvat Pál,Szabolcs Zoltán
Abstract
Abstract
Background
Clinical evidence suggests that the currently recommended approach to estimate the risk of aortic dissection in Marfan syndrome (MFS) is not reliable enough. Therefore, we investigated the possible role of visceral arterial tortuosity in the risk stratification.
Methods and results
Splenic and renal arteries of 37 MFS patients and 74 age and gender matched control subjects were segmented using CT angiography imaging. To measure tortuosity, distance metric (DM), sum of angles metric (SOAM), inflection count metric (ICM), and the ratio of ICM and SOAM (ICM/SOAM) were calculated. DM of the splenic, right and left renal artery was significantly higher in MFS patients than in controls (2.44 [1.92-2.80] vs. 1.75 [1.57-2.18] p < 0.001; 1.16 [1.10-1.28] vs. 1.11 [1.07-1.15] p = 0.011; 1.40 [1.29-1.70] vs. 1.13 [1.09-1.23] p < 0.001, respectively). A similar tendency for ICM and an opposite tendency for SOAM were observed. ICM/SOAM was significantly higher in the MFS group compared to controls in case of all three arteries (73.35 [62.26-93.63] vs. 50.91 [43.19-65.62] p < 0.001; 26.52 [20.69-30.24] vs. 19.95 [16.47-22.95] p < 0.001; 22.81 [18.64-30.96] vs. 18.38 [15.29-21.46] p < 0.001, respectively). MFS patients who underwent aortic root replacement had increased right and left renal DM and ICM/SOAM compared to MFS patients without surgery.
Conclusion
To our knowledge this is the first demonstration of increased arterial tortuosity in MFS on visceral arteries. Visceral arterial tortuosity, dominated by curves of lower frequency but higher amplitude according to the observed opposite tendency between the DM and SOAM metrics, could be a possible new predictor of serious manifestations of MFS.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Emberi Eroforrások Minisztériuma
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Genetics(clinical),General Medicine
Reference38 articles.
1. Judge DP, Dietz HC. Marfan’s syndrome. Lancet (London, England). 2005;366(9501):1965–76.
2. Dietz H. Marfan Syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, editors. GeneReviews® [Internet]. Seattle: University of Washington; 1993-2020. 2001 Apr 18 [Updated 2017 Oct 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1335/.
3. Benke K, Ágg B, Meienberg J, Kopps AM, Fattorini N, Stengl R, et al. Hungarian Marfan family with large FBN1 deletion calls attention to copy number variation detection in the current NGS era. J Thorac Dis. 2018;10(4):2456–60 [cited 2019 Jun 6] Available from: http://www.ncbi.nlm.nih.gov/pubmed/29850152.
4. Ahimastos AA, Aggarwal A, Savarirayan R, Dart AM, Kingwell BA. A role for plasma transforming growth factor-β and matrix metalloproteinases in aortic aneurysm surveillance in Marfan syndrome? Atherosclerosis. 2010;209(1):211–4.
5. Benke K, Ágg B, Szilveszter B, Tarr F, Nagy ZBB, Pólos M, et al. The role of transforming growth factor-beta in Marfan syndrome. Cardiol J. 2013;20(3):227–34.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献