Nanoscale Structural Comparison of Fibrillin-1 Microfibrils Isolated from Marfan and Non-Marfan Syndrome Human Aorta

Author:

Șulea Cristina M.123ORCID,Mártonfalvi Zsolt1ORCID,Csányi Csilla1,Haluszka Dóra1ORCID,Pólos Miklós23,Ágg Bence234ORCID,Stengl Roland23,Benke Kálmán235,Szabolcs Zoltán23,Kellermayer Miklós S. Z.1

Affiliation:

1. Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary

2. Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary

3. Hungarian Marfan Foundation, 1122 Budapest, Hungary

4. Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary

5. Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany

Abstract

Fibrillin-1 microfibrils are essential elements of the extracellular matrix serving as a scaffold for the deposition of elastin and endowing connective tissues with tensile strength and elasticity. Mutations in the fibrillin-1 gene (FBN1) are linked to Marfan syndrome (MFS), a systemic connective tissue disorder that, besides other heterogeneous symptoms, usually manifests in life-threatening aortic complications. The aortic involvement may be explained by a dysregulation of microfibrillar function and, conceivably, alterations in the microfibrils’ supramolecular structure. Here, we present a nanoscale structural characterization of fibrillin-1 microfibrils isolated from two human aortic samples with different FBN1 gene mutations by using atomic force microscopy, and their comparison with microfibrillar assemblies purified from four non-MFS human aortic samples. Fibrillin-1 microfibrils displayed a characteristic “beads-on-a-string” appearance. The microfibrillar assemblies were investigated for bead geometry (height, length, and width), interbead region height, and periodicity. MFS fibrillin-1 microfibrils had a slightly higher mean bead height, but the bead length and width, as well as the interbead height, were significantly smaller in the MFS group. The mean periodicity varied around 50–52 nm among samples. The data suggest an overall thinner and presumably more frail structure for the MFS fibrillin-1 microfibrils, which may play a role in the development of MFS-related aortic symptomatology.

Funder

Hungarian National Research, Development and Innovation Office

New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development, and Innovation Fund

European Union

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3