Multi-level consistent changes of the ECM pathway identified in a typical keratoconus twin’s family by multi-omics analysis

Author:

Hao Xiao-dan,Chen Xiu-nian,Zhang Yang-yang,Chen Peng,Wei Chao,Shi Wei-yun,Gao HuaORCID

Abstract

Abstract Background Keratoconus (KC) is a common, degenerative disorder of the cornea, and genetic factors play a key role in its development. However, the genetic etiology of KC is still unclear. This study used the family of twins as material, using, for the first time, multi-omics analysis, to systematically display the changes in KC candidate factors in patients at the DNA, RNA, and protein levels. These can evaluate candidate pathogenic factors in depth and lock onto pathogenic targets. Results The twins in this study presented classic phenotypes, clear diagnoses, complete case data, and clinical samples, which are excellent materials for genetically studying KC. Whole-exome sequencing was conducted on both the twins and their parents. Transcriptome sequencing was conducted on proband’s and health individual’s primary human corneal fibroblast cells. Quantitative Real-time PCR and western blot were used to validate the differential gene expressions between the proband and controls. By integrating genomics, transcriptome, and protein level data, multiple consecutive events of KC were systematically analyzed to help better understand the molecular mechanism and genetic basis of KC. The results showed that the accumulation of rare, micro-effect risk variants was the pathogenic factor in this Chinese KC family. Consistent changes in extracellular matrices (ECMs) at the DNA and RNA levels suggested that ECM related changes play a key role in KC pathogenesis. The major gene variants (WNT16, CD248, COL6A2, COL4A3 and ADAMTS3) may affect the expression of related collagens or ECM proteins, thus reducing the amount of ECM in corneas and resulting in KC. Conclusions This study, the first to explore the genetic etiology of KC via multi-omics analysis under the polygenetic model, has provided new insights into the genetic mechanisms underlying KC and an effective strategy for studying KC pathogenesis in the future.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Innovation Project of Shandong Academy of Medical Sciences

Postdoctoral Research Foundation of China

speical support for post-doc creative funding in shangdong province

Applied Research Program for Post-Doctoral in Qingdao

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3