Abstract
Abstract
Background
Congenital Central Hypoventilation Syndrome (CCHS) is a rare condition characterized by an alveolar hypoventilation due to a deficient autonomic central control of ventilation and a global autonomic dysfunction. Paired-like homeobox 2B (PHOX2B) mutations are found in most of the patients with CCHS. In recent years, the condition has evolved from a life-threatening neonatal onset disorder to include broader and milder clinical presentations, affecting children, adults and families. Genes other than PHOX2B have been found responsible for CCHS in rare cases and there are as yet other unknown genes that may account for the disease. At present, management relies on lifelong ventilatory support and close follow up of dysautonomic progression.
Body
This paper provides a state-of-the-art comprehensive description of CCHS and of the components of diagnostic evaluation and multi-disciplinary management, as well as considerations for future research.
Conclusion
Awareness and knowledge of the diagnosis and management of this rare disease should be brought to a large health community including adult physicians and health carers.
Funder
Executive Agency for Health and Consumers
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Genetics (clinical),General Medicine
Reference107 articles.
1. Alexandrescu S, Rosenberg H, Tatevian N. Role of calretinin immunohistochemical stain in evaluation of Hirschsprung disease: an institutional experience. Int J Clin Exp Pathol. 2013;6(12):2955–61 Published 2013 Nov 15.
2. Amiel J, Laudier B, Attié-Bitach TH, de Pontual L, Gener B, et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nautre Genet. 2003;33:1–3.
3. Arai H, Otagiri T, Sasaki A, Umetsu K, Hayasaka K. Polyalanine expansion of PHOX2B in congenital central hypoventilation syndrome: rs17884724:A>C is associated with 7-alanine expansion. J Hum Genet. 2010;55(1):4–7. https://doi.org/10.1038/jhg.2009.109.
4. Bachetti T, Bocca P, Borghini S, Matera I, Prigione I, Ravazzolo R, Ceccherini I. Geldanamycin promotes nuclear localisation and clearance of PHOX2B misfolded proteins containing polyalanine expansions. Int J Biochem Cell Biol. 2007;39:327–39.
5. Bachetti T, Ceccherini I. Causative and common PHOX2B variants define a broad phenotypic spectrum. Clin Genet. 2020;97:103–13.
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献