Aspects of the development of Ixodes anatis under different environmental conditions in the laboratory and in the field

Author:

Bansal NatashaORCID,Pomroy William E.,Heath Allen C. G.,Castro Isabel

Abstract

Abstract Background Numerous laboratory and fewer field-based studies have found that ixodid ticks develop more quickly and survive better at temperatures between 18 °C and 26 °C and relative humidity (RH) between 75 and 94%. Ixodes anatis Chilton, 1904, is an endophilic, nidicolous species endemic to North Island brown kiwi (Apteryx mantelli) (NIBK) and the tokoeka (Apteryx australis), and little is known about the environmental conditions required for its development. The aims of this study were to determine and compare the conditions of temperature and RH that ensure the best survival of the kiwi tick and the shortest interstadial periods, in laboratory conditions and outdoors inside artificial kiwi burrows. Methods Free-walking engorged ticks were collected off wild kiwi hosts and placed in the laboratory under various fixed temperature and humidity regimes. In addition, sets of the collected ticks at different developmental stages were placed in artificial kiwi burrows. In both settings, we recorded the times taken for the ticks to moult to the next stage. Results Larvae and nymphs both showed optimum development at between 10 °C and 20 °C, which is lower than the optimum temperature for development in many other species of ixodid ticks. However, larvae moulted quicker and survived better when saturation deficits were < 1–2 mmHg (RH > 94%); in comparison, the optimum saturation deficits for nymph development were 1–10 mmHg. Conclusions Our results suggest that the kiwi tick has adapted to the stable, but relatively cool and humid conditions in kiwi burrows, reflecting the evolutionary consequences of its association with the kiwi. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3