Secondary malaria vectors in western Kenya include novel species with unexpectedly high densities and parasite infection rates

Author:

Mustapha Amine M.,Musembi Susan,Nyamache Anthony K.,Machani Maxwell G.,Kosgei Jackline,Wamuyu Lucy,Ochomo Eric,Lobo Neil F.

Abstract

Abstract Background Malaria vector control has been implemented chiefly through indoor interventions targeting primary vectors resulting in population declines—pointing to a possible greater proportional contribution to transmission by secondary malaria vectors with their predominant exophagic and exophilic traits. With a historical focus on primary vectors, there is paucity of data on secondary malaria vectors in many countries in Africa. This study sought to determine the species compositions and bionomic traits, including proportions infected with Plasmodium falciparum and phenotypic insecticide resistance, of secondary vectors in three sites with high malaria transmission in Kisumu County, western Kenya. Methods Cross-sectional sampling of adult Anopheles was conducted using indoor and outdoor CDC light traps (CDC-LT) and animal-baited traps (ABTs) in Kakola-Ombaka and Kisian, while larvae were sampled in Ahero. Secondary vectors captured were exposed to permethrin using WHO bioassays and then analyzed by ELISA to test for proportions infected with P. falciparum sporozoites. All Anopheles were identified to species using morphological keys with a subset being molecularly identified using ITS2 and CO1 sequencing for species identification. Results Two morphologically identified secondary vectors captured—An. coustani and An. pharoensis—were determined to consist of four species molecularly. These included An. christyi, An. sp. 15 BSL-2014, an unidentified member of the An. coustani complex (An. cf. coustani) and a species similar to that of An. pharoensis and An. squamosus (An. cf. pharoensis). Standardized (Anopheles per trap per night) capture rates demonstrate higher proportions of secondary vectors across most trapping methods—with overall indoor and outdoor CDC-LTs and ABT captures composed of 52.2% (n = 93), 78.9% (n = 221) and 58.1% (n = 573) secondary vectors respectively. Secondary vectors were primarily caught outdoors. The overall proportion of secondary vectors with P. falciparum sporozoite was 0.63% (n = 5), with the unidentified species An. cf. pharoensis, determined to carry Plasmodium. Overall secondary vectors were susceptible to permethrin with a > 99% mortality rate. Conclusions Given their high densities, endophily equivalent to primary vectors, higher exophily and Plasmodium-positive proportions, secondary vectors may contribute substantially to malaria transmission. Unidentified species demonstrate the need for further morphological and molecular identification studies towards further characterization. Continued monitoring is essential for understanding their temporal contributions to transmission, the possible elevation of some to primary vectors and the development of insecticide resistance. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3