Evaluation of the solar-powered Silver Bullet 2.1 (Lumin 8) light trap for sampling malaria vectors in western Kenya

Author:

Mbare Oscar,Njoroge Margaret Mendi,Ong’wen Fedinand,Bukhari Tullu,Fillinger Ulrike

Abstract

Abstract Background Centers for Disease Control and Prevention (CDC) light traps are widely used for sampling mosquitoes. However, this trap, manufactured in the USA, poses challenges for use in sub-Saharan Africa due to procurement costs and shipping time. Traps that are equally efficient than the CDC light trap, but which are amenable for use in remote African settings and made in Africa, are desirable to improve local vector surveillance. This study evaluated a novel solar-powered light trap made in South Africa (Silver Bullet trap; SB), for its efficiency in malaria vector sampling in western Kenya. Methods Large cage (173.7 m3) experiments and field evaluations were conducted to compare the CDC-incandescent light trap (CDC-iLT), CDC-UV fluorescent tube light trap (CDC-UV), SB with white diodes (SB-White) and SB with UV diodes (SB-UV) for sampling Anopheles mosquitoes. Field assessments were done indoors and outdoors following a Latin square design. The wavelengths and absolute spectral irradiance of traps were compared using spectrometry. Results The odds of catching a released Anopheles in the large cage experiments with the SB-UV under ambient conditions in the presence of a CDC-iLT in the same system was three times higher than what would have been expected when the two traps were equally attractive (odds ratio (OR) 3.2, 95% confidence interval CI 2.8–3.7, P < 0.01)). However, when the white light diode was used in the SB trap, it could not compete with the CDC-iLT (OR 0.56, 95% CI 0.48–0.66, p < 0.01) when the two traps were provided as choices in a closed system. In the field, the CDC and Silver Bullet traps were equally effective in mosquito sampling. Irrespective of manufacturer, traps emitting UV light performed better than white or incandescent light for indoor sampling, collecting two times more Anopheles funestus sensu lato (s.l.) (RR 2.5; 95% CI 1.7–3.8) and Anopheles gambiae s.l. (RR 2.5; 95% 1.7–3.6). Outdoor collections were lower than indoor collections and similar for all light sources and traps. Conclusions The solar-powered SB trap compared well with the CDC trap in the field and presents a promising new surveillance device especially when charging on mains electricity is challenging in remote settings.

Funder

Wellcome Trust

Biovision Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3