Effects of different drugs and hormone treatment on Toxoplasma gondii glutathione S-transferase 2

Author:

Li Shuang,Ying Zhu,Xue Yangfei,Sun Zhepeng,Liu Jing,Liu Qun

Abstract

Abstract Background Glutathione S-transferase (GST) in eukaryotic organisms has multiple functions such as detoxifying endogenous/exogenous harmful substances to protect cells from oxidative damage, participating in sterol synthesis and metabolism, and regulating signaling pathways. Our previous work identified an important GST protein in Toxoplasma that contributes to vesicle trafficking called TgGST2, the deletion of which significantly reduces the virulence of the parasite. Meanwhile, we considered that TgGST2 may also play a role in other pathways of parasite life activities. Methods The tertiary structures of TgGST2 as well as estradiol (E2) and progesterone (P4) were predicted by trRosetta and Autodock Vina software, the binding sites were analyzed by PyMol's GetBox Plugin, and the binding capacity was evaluated using Discovery Studio plots software. We examined the influence of E2 and P4 on TgGST2 via glutathione S-transferase enzyme activity and indirect immunofluorescence assay (IFA) and through the localization observation of TgGST2 to evaluate its response ability in different drugs. Results TgGST2 could bind to exogenous E2 and P4, and that enzymatic activity was inhibited by the hormones in a concentration-dependent manner. Upon P4 treatment, the localization of TgGST2 changed from Golgi and vesicles to hollow circles, leading to abnormal localization of the molecular transporter Sortilin (VPS10) and microneme proteins (M2AP and MIC2), which ultimately affect the parasite life activities, but E2 had no significant effect. Moreover, diverse types of drugs had divergent effects on TgGST2, among which treatment with antifungal agents (voriconazole and clarithromycin), anticarcinogens (KU-60019, WYE-132 and SH5-07) and coccidiostats (dinitolmide and diclazuril) made the localization of TgGST2 appear in different forms, including dots, circles and rod shaped. Conclusions Our study shows that TgGST2 plays a role in sterol treatment and can be affected by P4, which leads to deficient parasite motility. TgGST2 exerts divergent effects in response to the different properties of the drugs themselves. Its responsiveness to diverse drugs implies a viable target for the development of drugs directed against Toxoplasma and related pathogenic parasites. Graphical Abstract

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3