Patterns of spatial genetic structures in Aedes albopictus (Diptera: Culicidae) populations in China

Author:

Wei Yong,Wang Jiatian,Song Zhangyao,He Yulan,Zheng Zihao,Fan Peiyang,Yang Dizi,Zhou Guofa,Zhong Daibin,Zheng Xueli

Abstract

AbstractBackgroundThe Asian tiger mosquito,Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. Little is known about the population structure and genetic differentiation of nativeAe. albopictusin China. The aim of this study was to examine the patterns of the spatial genetic structures of nativeAe. albopictuspopulations, and their relationship to dengue incidence, on a large geographical scale.MethodsDuring 2016–2018, adult femaleAe. albopictusmosquitoes were collected by human landing catch (HLC) or human-bait sweep-net collections in 34 localities across China. Thirteen microsatellite markers were used to examine the patterns of genetic diversity, population structure, and gene flow among nativeAe. albopictuspopulations. The correlation between population genetic indices and dengue incidence was also examined.ResultsA total of 153 distinct alleles were identified at the 13 microsatellite loci in the tested populations. All loci were polymorphic, with the number of distinct alleles ranging from eight to sixteen. Genetic parameters such as PIC, heterozygosity, allelic richness and fixation index (FST) revealed highly polymorphic markers, high genetic diversity, and low population genetic differentiation. In addition, Bayesian analysis of population structure showed two distinct genetic groups in southern-western and eastern-central-northern China. The Mantel test indicated a positive correlation between genetic distance and geographical distance (R2 = 0.245,P = 0.01). STRUCTURE analysis, PCoA and GLS interpolation analysis indicated thatAe. albopictuspopulations in China were regionally clustered. Gene flow and relatedness estimates were generally high between populations. We observed no correlation between population genetic indices of microsatellite loci inAe. albopictuspopulations and dengue incidence.ConclusionStrong gene flow probably assisted by human activities inhibited population differentiation and promoted genetic diversity among populations ofAe. albopictus. This may represent a potential risk of rapid spread of mosquito-borne diseases. The spatial genetic structure, coupled with the association between genetic indices and dengue incidence, may have important implications for understanding the epidemiology, prevention, and control of vector-borne diseases.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference97 articles.

1. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11:1177–85.

2. Adhami J, Reiter P. Introduction and establishment of Aedes (Stegomyia) albopictus Skuse (Diptera: Culicidae) in Albania. J Am Mosq Control Assoc. 1998;14:340–3.

3. Sprenger D, Wuithiranyagool T. The discovery and distribution of Aedes albopictus in Harris County, Texas. J Am Mosq Control Assoc. 1986;2:217–9.

4. Forattini OP. Identification of Aedes (Stegomyia) albopictus (Skuse) in Brazil. Rev Saude Publica. 1986;20:244–5.

5. Laille M, Fauran P, Rodhain F. The presence of Aedes (Stegomyia) albopictus in the Fiji Islands. Bull Soc Pathol Exot. 1990;83:394–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3