Beech tree masting explains the inter-annual variation in the fall and spring peaks of Ixodes ricinus ticks with different time lags

Author:

Bregnard Cindy,Rais Olivier,Herrmann Coralie,Kahl Olaf,Brugger Katharina,Voordouw Maarten J.ORCID

Abstract

Abstract Background The tick Ixodes ricinus is an important vector of tick-borne diseases including Lyme borreliosis. In continental Europe, the nymphal stage of I. ricinus often has a bimodal phenology with a large spring peak and a smaller fall peak. There is consensus about the origin of the spring nymphal peak, but there are two alternative hypotheses for the fall nymphal peak. In the direct development hypothesis, larvae quest as nymphs in the fall of the same year that they obtained their larval blood meal. In the developmental diapause hypothesis, larvae overwinter in the engorged state and quest as nymphs one year after they obtained their larval blood meal. These two hypotheses make different predictions about the time lags that separate the larval blood meal and the density of questing nymphs (DON) in the spring and fall. Methods Inter-annual variation in seed production (masting) by deciduous trees is a time-lagged index for the density of vertebrate hosts (e.g., rodents) which provide blood meals for larval ticks. We used a long-term data set on the masting of the European beech tree and a 15-year study on the DON at 4 different elevation sites in western Switzerland to differentiate between the two alternative hypotheses for the origin of the fall nymphal peak. Results Questing I. ricinus nymphs had a bimodal phenology at the three lower elevation sites, but a unimodal phenology at the top elevation site. At the lower elevation sites, the DON in the fall was strongly correlated with the DON in the spring of the following year. The inter-annual variation in the densities of I. ricinus nymphs in the fall and spring was best explained by a 1-year versus a 2-year time lag with the beech tree masting index. Fall nymphs had higher fat content than spring nymphs indicating that they were younger. All these observations are consistent with the direct development hypothesis for the fall peak of I. ricinus nymphs at our study site. Our study provides new insight into the complex bimodal phenology of this important disease vector. Conclusions Public health officials in Europe should be aware that following a strong mast year, the DON will increase 1 year later in the fall and 2 years later in the spring. Studies of I. ricinus populations with a bimodal phenology should consider that the spring and fall peak in the same calendar year represent different generations of ticks. Graphical Abstract

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Natural Sciences and Engineering Research Council of Canada

Saskatchewan Health Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3