Author:
Liu Qin,Yu Long,Jiang Fan,Li Muxiao,Zhan Xueyan,Huang Yuan,Wang Sen,Du Xiaoyong,He Lan,Zhao Junlong
Abstract
Abstract
Background
Babesia gibsoni is an apicomplexan parasite transmitted by ticks, which can infect canine species and cause babesiosis. The apicoplast is an organelle associated with isoprenoids metabolism, is widely present in apicomplexan parasites, except for Cryptosporidium. Available data indicate that the apicoplast is essential for the survival of apicomplexan parasites.
Methods
Here, the apicoplast genome of B. gibsoni was investigated by high-throughput genome sequencing, bioinformatics analysis, and conventional PCR.
Results
The apicoplast genome of B. gibsoni-Wuhan strain (B. gibsoni-WH) consists of a 28.4 kb circular molecule, with A + T content of 86.33%, similar to that of B. microti. Specifically, this genome encodes genes involved in maintenance of the apicoplast DNA, transcription, translation and maturation of organellar proteins, which contains 2 subunits of ribosomal RNAs, 17 ribosomal proteins, 1 EF-Tu elongation factor (tufA), 5 DNA-dependent RNA polymerase beta subunits, 2 Clp protease chaperones, 23 tRNA genes and 5 unknown open reading frames (hypothetical proteins). Phylogenetic analysis revealed high similarity of B. gibsoni apicoplast genome to that of B. orientalis and B. bovis.
Conclusions
To our knowledge, this is the first report of annotation and characterization of B. gibsoni-WH apicoplast genome. The results will facilitate the development of new anti-Babesia drug targets.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献