Short-term effects of tropical cyclones on the incidence of dengue: a time-series study in Guangzhou, China

Author:

Li Chuanxi,Zhao Zhe,Yan Yu,Liu Qiyong,Zhao Qi,Ma Wei

Abstract

Abstract Background Limited evidence is available about the association between tropical cyclones and dengue incidence. This study aimed to examine the effects of tropical cyclones on the incidence of dengue and to explore the vulnerable populations in Guangzhou, China. Methods Weekly dengue case data, tropical cyclone and meteorological data during the tropical cyclones season (June to October) from 2015 to 2019 were collected for the study. A quasi-Poisson generalized linear model combined with a distributed lag non-linear model was conducted to quantify the association between tropical cyclones and dengue, controlling for meteorological factors, seasonality, and long-term trend. Proportion of dengue cases attributable to tropical cyclone exposure was calculated. The effect difference by sex and age groups was calculated to identify vulnerable populations. The tropical cyclones were classified into two levels to compare the effects of different grades of tropical cyclones on the dengue incidence. Results Tropical cyclones were associated with an increased number of dengue cases with the maximum risk ratio of 1.41 (95% confidence interval 1.17–1.69) in lag 0 week and cumulative risk ratio of 2.13 (95% confidence interval 1.28–3.56) in lag 0–4 weeks. The attributable fraction was 6.31% (95% empirical confidence interval 1.96–10.16%). Men and the elderly were more vulnerable to the effects of tropical cyclones than the others. The effects of typhoons were stronger than those of tropical storms among various subpopulations. Conclusions Our findings indicate that tropical cyclones may increase the incidence of dengue within a 4-week lag in Guangzhou, China, and the effects were more pronounced in men and the elderly. Precautionary measures should be taken with a focus on the identified vulnerable populations to control the transmission of dengue associated with tropical cyclones. Graphical Abstract

Funder

State Key Laboratory of Infectious Disease Prevention and Control

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference50 articles.

1. Guzman O, Jiang H. Global increase in tropical cyclone rain rate. Nat Commun. 2021;12:5344.

2. Yang W, Hsieh T-L, Vecchi GA. Hurricane annual cycle controlled by both seeds and genesis probability. Proc Natl Acad Sci U S A. 2021;118:e2108397118.

3. IPCC AR6 WGI. Climate change 2021 the physical science basis. 2021. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf. Accessed 26 Dec 2021.

4. Cai W, Zhang C, Suen HP, Ai S, Bai Y, Bao J, et al. The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health. 2021;6:e64–81.

5. World Health Organization. Dengue and severe dengue. 2021. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed 26 Dec 2021.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3