Abstract
Understanding tropical cyclone (TC) climatology is a problem of profound societal significance and deep scientific interest. The annual cycle is the biggest radiatively forced signal in TC variability, presenting a key test of our understanding and modeling of TC activity. TCs over the North Atlantic (NA) basin, which are usually called hurricanes, have a sharp peak in the annual cycle, with more than half concentrated in only 3 mo (August to October), yet existing theories of TC genesis often predict a much smoother cycle. Here we apply a framework originally developed to study TC response to climate change in which TC genesis is determined by both the number of pre-TC synoptic disturbances (TC “seeds”) and the probability of TC genesis from the seeds. The combination of seeds and probability predicts a more consistent hurricane annual cycle, reproducing the compact season, as well as the abrupt increase from July to August in the NA across observations and climate models. The seeds-probability TC genesis framework also successfully captures TC annual cycles in different basins. The concise representation of the climate sensitivity of TCs from the annual cycle to climate change indicates that the framework captures the essential elements of the TC climate connection.
Publisher
Proceedings of the National Academy of Sciences
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献