Abstract
Abstract
Background
Aedes albopictus is a vector of major arboviral diseases and a primary pest in tropical and temperate regions of China. In most cities of China, the current monitoring system for the spread of Ae. albopictus is based on the subdistrict scale and does not consider spatial distribution for analysis of species density. Thus, the system is not sufficiently accurate for epidemic investigations, especially in large cities.
Methods
This study used an improved surveillance program, with the mosquito oviposition trap (MOT) method, integrating the actual monitoring locations to investigate the temporal and spatial distribution of Ae. albopictus abundance in an urban area of Shanghai, China from 2018 to 2019. A total of 133 monitoring units were selected for surveillance of Ae. albopictus density in the study area, which was composed of 14 subdistricts. The vector abundance and spatial structure of Ae. albopictus were predicted using a binomial areal kriging model based on eight MOTs in each unit. Results were compared to the light trap (LT) method of the traditional monitoring scheme.
Results
A total of 8,192 MOTs were placed in the study area in 2018, and 7917 (96.6%) were retrieved, with a positive rate of 6.45%. In 2019, 22,715 (97.0%) of 23,408 MOTs were recovered, with a positive rate of 5.44%. Using the LT method, 273 (93.5%) and 312 (94.5%) adult female Ae. albopictus were gathered in 2018 and 2019, respectively. The Ae. albopictus populations increased slowly from May, reached a peak in July, and declined gradually from September. The MOT positivity index (MPI) showed significant positive spatial autocorrelation across the study area, whereas LT collections indicated a nonsignificant spatial autocorrelation. The MPI was suitable for spatial interpolation using the binomial areal kriging model and showed different hot spots in different years.
Conclusions
The improved surveillance system integrated with a geographical information system (GIS) can improve our understanding of the spatial and temporal distribution of Ae. albopictus in urban areas and provide a practical method for decision-makers to implement vector control and mosquito management.
Graphical abstract
Funder
Shanghai Municipal Health Commission
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference56 articles.
1. Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12:435–47.
2. Kotsakiozi P, Richardson JB, Pichler V, Favia J, Martins AJ, Urbanelli S, et al. Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion. Ecol Evol. 2017;7:10143–57.
3. Li CX, Wang ZM, Dong YD, Yan T, Zhang YM, Guo XX, et al. Evaluation of lambda-cyhalothrin barrier spray on vegetation for control of Aedes albopictus in China. J Am Mosq Control Assoc. 2010;26:346–8.
4. Wu F, Liu Q, Lu L, Wang J, Song X, Ren D. Distribution of Aedes albopictus (Diptera: Culicidae) in northwestern China. Vector Borne Zoonotic Dis. 2011;11:1181–6.
5. Wang YG, Lix X, Li CL, Su TY, Jin JC, Guo YH, et al. A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China. J Econ Entomol. 2017;110:239–44.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献