Genetic structure of Spirometra mansoni (Cestoda: Diphyllobothriidae) populations in China revealed by a Target SSR-seq method

Author:

Xu Fang Fang,Chen Wen Qing,Liu Wei,Liu Sha Sha,Wang Yi Xing,Chen Jing,Cui Jing,Zhang Xi

Abstract

Abstract Background In China, the plerocercoid of the cestode Spirometra mansoni is the main causative agent of human and animal sparganosis. However, the population genetic structure of this parasite remains unclear. In this study, we genotyped S. mansoni isolates with the aim to improve current knowledge on the evolution and population diversity of this cestode. Methods We first screened 34 perfect simple sequence repeats (SSRs) using all available omic data and then constructed target sequencing technology (Target SSR-seq) based on the Illumina NovaSeq platform. Next, a series of STRUCTURE. clustering, principal component, analysis of molecular variance and TreeMix analyses were performed on 362 worm samples isolated from 12 different hosts in 16 geographical populations of China to identify the genetic structure. Results A total of 170 alleles were detected. The whole population could be organized and was found to be derived from the admixture of two ancestral clusters. TreeMix analysis hinted that possible gene flow occurred from Guizhou (GZ) to Sichuan (SC), SC to Jaingxi (JX), SC to Hubei (HB), GZ to Yunnan (YN) and GZ to Jiangsu (JS). Both neighbor-joining clustering and principal coordinate analysis showed that isolates from intermediate hosts tend to cluster together, while parasites from definitive hosts revealed greater genetic differences. Generally, a S. mansoni population was observed to harbor high genetic diversity, moderate genetic differentiation and a little genetic exchange among geographical populations. Conclusions A Target SSR-seq genotyping method was successfully developed, and an in-depth view of genetic diversity and genetic relationship will have important implications for the prevention and control of sparganosis. Graphical Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3