Stable transfection system for Babesia sp. Xinjiang

Author:

Wang Jinming,Wang Xiaoxing,Guan Guiquan,Yang Jifei,Liu Junlong,Liu Aihong,Li Youquan,Luo Jianxun,Yin Hong

Abstract

Abstract Background Stable transfection systems have been described in many protozoan parasites, including Plasmodium falciparum, Cryptosporidium parvum, Babesia bovis, Babesia ovata, and Babesia gibsoni. For Babesia sp. Xinjiang (Bxj), which is the causative pathogen of ovine babesiosis and mainly prevails across China, the platform of those techniques remains absent. Genetic manipulation techniques are powerful tools to enhance our knowledge on parasite biology, which may provide potential drug targets and diagnostic markers. Methods We evaluated the inhibition efficiency of blasticidin (BSD) and WR99210 to Bxj. Then, a plasmid was constructed bearing selectable marker BSD, green fluorescent protein (GFP) gene, and rhoptry-associated protein-1 3′ terminator region (rap 3′ TR). The plasmid was integrated into the elongation factor-1 alpha (ef-1α) site of Bxj genome by cross-over homologous recombination technique. Twenty μg of plasmid was transfected into Bxj merozoites. Subsequently, drug selection was performed 24 h after transfection to generate transfected parasites. Results Transfected parasite lines, Bxj-c1, Bxj-c2, and Bxj-c3, were successfully obtained after transfection, drug selection, and colonization. Exogenous genes were integrated into the Bxj genome, which were confirmed by PCR amplification and sequencing. In addition, results of western blot (WB) and indirect immunofluorescence assay (IFA) revealed that GFP-BSD had expressed for 11 months. Conclusions In our present study, stable transfection system for Bxj was successfully developed. We anticipate that this platform will greatly facilitate basic research of Bxj. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3